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Abstract. We present an ontology for representing workflows over com-
ponents with Read-Write Linked Data interfaces and give an operational
semantics to the ontology via a rule language. Workflow languages have
been successfully applied for modelling behaviour in enterprise informa-
tion systems, in which the data is often managed in a relational database.
Linked Data interfaces have been widely deployed on the web to support
data integration in very diverse domains, increasingly also in scenar-
ios involving the Internet of Things, in which application behaviour is
often specified using imperative programming languages. With our work
we aim to combine workflow languages, which allow for the high-level
specification of application behaviour by non-expert users, with Linked
Data, which allows for decentralised data publication and integrated data
access. We show that our ontology is expressive enough to cover the
basic workflow patterns and demonstrate the applicability of our app-
roach with a prototype system that observes pilots carrying out tasks
in a virtual reality aircraft cockpit. On a synthetic benchmark from the
building automation domain, the runtime scales linearly with the size of
the number of Internet of Things devices.

1 Introduction

Information systems are increasingly distributed. Consider the growing deploy-
ment of sensors and actuators, the modularisation of monolithic software into
microservices, and the movement to decentralise data from company-owned
data silos into user-owned data pods. The drivers of increasing distribution
include:

– Cheaper, smaller, and more energy-efficient networked hardware makes
widespread deployment feasible1.

– Rapidly changing business environments require flexible re-use of components
in new business offerings [17].

1 http://www.forbes.com/sites/oreillymedia/2015/06/07/how-the-new-hardware-mo
vement-is-even-bigger-than-the-iot/.
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– Fast development cycles require independent evolution of components [17].
– Privacy-aware users demand to retain ownership of their data2.

The distribution into components raises the opportunity to create new integrated
applications out of the components, given sufficient interoperability. One way to
make components interoperable is to equip the components with uniform inter-
faces using technologies around Linked Data. Consider, e.g. the W3C’s Web of
Things3 initiative and the MIT’s Solid (“social linked data”) project4, where
REST provides an uniform interface to access and manipulate the state of com-
ponents, and RDF provides an uniform data model for representing component
state that allows for using reasoning to resolve schema heterogeneity. While the
paradigms for (read-only) data integration systems based on Linked Data are
relatively agreed upon [11], techniques for the creation of applications that inte-
grate components with Read-Write Linked Data interfaces are an active area
of research [2,4,15,28]. Workflows are a way to create applications, according
to Jablonski and Bussler [14], that is highly suitable for integration scenarios,
easy to understand (for validation and specification by humans), and formal
(for execution and verification by machines). E.g., consider an evacuation sup-
port workflow for a smart building (cf. task 4 in our evaluation, Sect. 6), which
integrates multiple systems of the building, should be validated by the building
management and the fire brigade, verified to be deadlock-free, and executable.
Hence, we tackle the research question: How to specify, monitor, and execute
applications given as workflows in the environment of Read-Write Linked Data?

The playing field for applications in the context of Read-Write Linked Data
is big and diverse: As of today, the Linking Open Data cloud diagram5 lists
1’163 data sets from various domains for read access. The Linked Data Platform
(LDP)6 specifies interaction with Read-Write Linked Data sources. Besides Solid
for social networks, a showcase for Read-Write Linked Data is the Web of Things,
which is built on sensors and actuators on the Internet of Things. Using such sen-
sors and actuators, we can build applications such as integrated Cyber-Physical
Systems, where sensors and actuators provide the interface to Virtual Reality
systems (cf. the showcase in the evaluation, Sect. 6.2). Other non-RDF REST
APIs provide access to weather reports7 or building management systems (e.g.
Project Haystack8) and can be wrapped to support RDF. Using such APIs, we
can build applications such as integrated building automation systems (cf. the
scenario of the synthetic benchmark in the evaluation, Sect. 6.3).

Traditional environments for workflows are fundamentally different from
Read-Write Linked Data. Elmroth et al. argue that the properties of the envi-
ronment determine the model of computation, which serves as the basis of a

2 “Putting Data back into the Hands of Owners”, http://tcrn.ch/2i8h7gp.
3 http://www.w3.org/WoT/.
4 http://solid.mit.edu/.
5 http://lod-cloud.net/.
6 http://www.w3.org/TR/ldp/.
7 http://openweathermap.org/.
8 http://www.project-haystack.org/.
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workflow language [5]. Consequently, we have developed ASM4LD [15], a model
of computation for the environment of Read-Write Linked Data. In this paper,
we investigate an approach for a workflow language consisting of an ontology and
operational semantics in ASM4LD. The differences between traditional environ-
ments of workflow languages and the environment of Read-Write Linked Data
(i.e. RDF and REST) pose the following particular challenges:

Querying and reasoning under the open-world assumption. Ontology
languages around RDF such as RDFS and OWL make the open-world
assumption (OWA). However, approaches from workflow management oper-
ate on relational databases, which make the closed-world assumption (CWA).
Closedness allows for testing if something holds for all parts of a workflow.

The absence of events in REST. HTTP implements CRUD (the operations
create, read, update, delete), but not the subscriptions to events. However,
approaches from workflow management use events as change notifications.

While both challenges could be mitigated by introducing assumptions (e.g.
negation-as-failure once we reach a certain completeness class [12]) or by extend-
ing the technologies (e.g. implement events using Web Sockets9 or Linked Data
Notifications [2]), those mitigation strategies would restrict the generality of the
approach, i.e. we would have to exclude components that provide Linked Data,
but do not share the assumptions or extensions of the mitigation strategy.

Previous works from Business Process Management, Semantic Web Services,
Linked Data, and REST operate on a different model of computation or are
complementary: [10,13,19] assume event-based data processing, decision making
based on process variables, and data residing in databases under the CWA,
whereas our approach relies on integrated state information from the web under
the OWA. [28,29] provide descriptions for automated composition or for assisting
developers. Currently, we do not see elaborate and correct descriptions available
at web scale, which hinders automated composition. We see our approach, which
allows for manual composition, as the first step towards automated composition.

The paper is structured as follows: In Sect. 2, we discuss related work. In
Sect. 3, we present the technologies on which we build our approach. Next, we
present our approach, which consists of two main contributions:

– An ontology to specify workflows models and workflow instances modelled in
OWL LD10 (Sect. 4) that allows for monitoring and execution using querying
and reasoning under the OWA. The ontology is strongly related to BPMN, a
graphical workflow notation, via the workflow patterns [25].

– An operational semantics for our workflow ontology. We use ASM4LD, a
model of computation for Read-Write Linked Data in the form of a condition-
action rule language (Sect. 5), which does not require event data and is
directly executable. We maintain workflow state in an LDP container.

9 http://www.ietf.org/rfc/rfc6455.txt.
10 http://semanticweb.org/OWLLD/.

http://www.ietf.org/rfc/rfc6455.txt
http://semanticweb.org/OWLLD/
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Fast data processing thanks to OWL LD and the executability of ASM4LD
allow for the direct application of our approach in practice. In the evaluation
(Sect. 6), we present a Virtual Reality showcase, and a benchmark in an Internet
of Things setting, specifically in the building automation domain. Moreover, we
show correctness and completeness of our approach. We conclude in Sect. 7.

2 Related Work

We now survey related work grouped by field of research.

Workflow Management. Previous work in the context of workflow languages
and workflow management systems is based on event-condition-action (ECA)
rules, whereas our approach is built for REST, and thus works without events.
ECA rules have been used to give operational semantics to workflow lan-
guages [13], and to implement workflow management systems [3]. Similar to
the case handling paradigm [26], we employ state machines to track the state
of activities in a workflow instance.

Web Services. WS-*-based approaches assume arbitrary operations, whereas
our approach works with REST resources, where the set of operations is con-
strained [20,30]. Pautasso et al. proposed extensions to BPEL such that e.g.
a BPEL process can invoke REST services [18], and that REST resources
representing processes push events [19]. While those extensions make iso-
lated REST calls fit the Web Services processing model of process variable
assignments, we propose a processing model based on integrated polled state.

Semantic Web Services. OWL-S and WSMO are mainly concerned with ser-
vice descriptions and corresponding reasoning for composition. Semantic Web
Services build on WS-* technology for workflow execution, e.g. the execution
in the context of WSMO, WSMX [10], is entirely event-based. In contrast,
our work is based on REST.

Scientific Workflows. Approaches like Taverna [24] and Wings [8] focus on
representing the data flow between processing steps. Our approach applies
control flow techniques from Workflow Management to REST.

Ontologies for Workflows. Similar to workflows in our ontology, processes
in OWL-S are also tree-structured (see Sect. 4) and use lists in RDF. Unlike
OWL-S, our ontology also covers workflow instances. Rospocher et al. [22] and
the project “Super” developed ontologies that describe process metamodels
such as BPMN, BPEL, and EPC. In contrast to our work, their ontologies
either require more expressive (OWL) reasoning or do not allow for execution
under the OWA.

3 Preliminaries

We next introduce the environment, Read-Write Linked Data, and the model of
computation, ASM4LD [15].
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Read-Write Linked Data. Linked Data is a collection of practices for data
publishing on the web that advocates the use of web standards: HTTP URIs11

should be used for identifying things. HTTP GET12 requests to those URIs
should be answered using descriptive data, e.g. in RDF13. Hyperlinks in the data
should enable the discovery of more information14. Read-Write Linked Data15

introduces RESTful write access to Linked Data (later standardised in the LDP
specification (see Footnote 6)). Hence, we can access the world’s state using mul-
tiple HTTP GET requests and enact change using HTTP PUT, POST, DELETE
requests.

In the paper, we denote RDF triples using binary predicates16, e.g. we write
for the triple in Turtle notation “<#wfm> rdf:type :WorkflowModel.”:

rdf :type(<#wfm>, :WorkflowModel)

We abbreviate a class assignment using a unary predicate with the class as
predicate name, e.g. :WorkflowModel(<#wfm>). The term rdf :List(. . . ) is a
shortcut, similar to the RDF list shortcut with () brackets in Turtle, and can be
regarded as a procedure that (1) takes as argument list elements, (2) adds the
corresponding RDF list triples, i.e. with terms rdf:first, rdf:rest, and rdf:nil,
to the current data, and (3) returns the blank node for the RDF list’s head.

ASM4LD, A Condition-Action Rule Language. We use a monotonic pro-
duction rule language to specify both reasoning on RDF data and interaction
with Read-Write Linked Data resources [23]. Rule programs in the language con-
sist of initial assertions and rules. The body of all rules is a basic graph pattern
query (see Footnote 18) (BGP). We distinguish two types of rules: (1) a deriva-
tion rule specifies productions using a BGP in the rule head, and (2) a request
rule specifies an interaction using an HTTP request description in the rule head.
We assume safe rules and exclude existential variables in rule heads.

As operational semantics for the rule language, we use ASM4LD, an Abstract
State Machine-based [9] model of computation for Read-Write Linked Data [15].
In the following, we sketch the operational semantics, where data processing is
done in repeated steps, subdivided into the following phases (cf. [15] for details):

(1) The working memory be empty.
(2) Add the initial assertions to the working memory.
(3) Evaluate on the working memory until the fixpoint:

(a) Request rules that contain GET requests, making the requests and adding
the data from the responses to the working memory.

11 http://www.ietf.org/rfc/rfc3986.txt.
12 http://www.ietf.org/rfc/rfc7230.txt.
13 http://www.w3.org/TR/rdf11-concepts/.
14 http://www.w3.org/DesignIssues/LinkedData.html.
15 http://www.w3.org/DesignIssues/ReadWriteLinkedData.html.
16 We assume the URI prefix definitions of http://prefix.cc/ The empty prefix denotes

http://purl.org/wild/vocab. The base URIs be http://example.org/.

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://prefix.cc/
http://purl.org/wild/vocab
http://example.org/
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Fig. 1. The ontology to express workflow models and instances as UML Class Dia-
gram. Shared classes between the diagrams are depicted in bold. We use the UML
Class Diagram’s class, inheritance, association, and enumeration to denote the RDFS
ontology language’s rdfs:Class, rdfs:subClassOf, rdf:Property with rdfs:domain

and rdfs:range, and instances.

(b) Derivation rules, adding the produced data to the working memory.
We thus acquire data about the world’s current state (from the responses to
the GET requests) and reason on this data (using the productions).

(4) Evaluate all request rules that contain PUT/POST/DELETE requests on
the working memory and make the corresponding HTTP requests. We thus
enact changes on the world’s state.

A loop over the phases (1) to (4) implements polling, the way to get informa-
tion about changes in a RESTful environment. Hypermedia-style link following
(to discover new information) can be implemented using request rules, e.g. in
the example below.

We use the following rule syntax: In the arguments of the binary predicates,
we allow for variables (printed in italics). We print constants in typewriter font.
We connect rule head and body using →. The head of a request rule contains
one HTTP request with the method as the function name, the target as the first
argument, and the RDF payload as the second argument (if applicable). E.g.
consider the following rule to retrieve all elements e of a given LDP container:

ldp : contains(http: //example.org/ldpc, e) → get(e)

4 Activity, Workflow Model and Instance Ontology

To describe workflow models and instances as well as activities, we propose
an ontology. We developed the ontology, see Fig. 117, with execution based on
17 The ontology can be accessed at http://purl.org/wild/vocab.

http://purl.org/wild/vocab
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Fig. 2. Workflow (solid: BPMN notation) with sequential activities (<#A>, <#B>).
Dashed: the tree representation with the parent node marked as sequential.

Fig. 3. State machine for the instance resources for the workflow and activity instance
resources. The dashed part only concerns workflow instance resources.

querying and reasoning under the OWA in mind. In this section, we define activ-
ities, workflows, and instances using the workflow in Fig. 2 as example.

Activities. We regard an atomic activity as a basic unit of work. We characterise
an activity by a postcondition represented as a SPARQL ASK query18, which
has to hold in the world’s state after the activity has been executed. We use
the postcondition (cf. :hasPostcondition in Fig. 1) to monitor the execution
of activities in workflows. For the execution of an atomic activity, the activity
description needs an HTTP request (cf. :hasHttpRequest in Fig. 1).

Workflow Models. A workflow model is a set of activities put into a defined
order. As notation to describe workflow models, BPMN is a popular choice. The
course of action (i.e. control flow) in a BPMN workflow model is denoted using
arrows that connect activities and gateways (e.g. decisions and branches). For
instance, the middle arrow in the workflow model in Fig. 2 orders activities <#A>
and <#B> sequentially. We call this view on the course of action flow-based.

In this paper, instead of a flow-based view on the course of action, we con-
sider a tree-based view, as investigated by Vanhatalo et al. [27]. Tree-structured
workflow languages include BPEL, a popular language to describe executable
workflows. In the tree, activities are leaf nodes. The non-leaf nodes are typed,
and the type determines the control flow of the children. The connection between
the tree-based (dashed) and the flow-based (solid) workflow representation is
depicted in Fig. 2. Flow-based workflows can be losslessly translated to tree-
structured workflows and vice versa [21]. We use the tree structure, as checks
for completion of workflow parts are easier in a tree. Of the multitude of control
flow features of different workflow languages, we support the most basic and
common, which have been compiled to the basic workflow patterns [25].

18 http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/TR/sparql11-query/
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We now show how to specify workflow models in RDF using Fig. 2’s model:

:WorkflowModel(<#wfm>) ∧ :SequentialActivity(<#root>)
∧:AtomicActivity(<#A>) ∧ :AtomicActivity(<#B>)

∧:hasBehaviour(<#wfm>, <#root>)
∧:hasChildActivities(<#root>, rdf :List(<#A>, <#B>))

As we assume tree-structured workflows, each workflow model (<#wfm>) has a
root activity (<#root>). If an activity is composite, i.e. a control flow element,
then the activity has an RDF list of child activities. Here, <#root> is sequential,
with the child activities <#A>, <#B>. The child activities could again be com-
posite, thus forming a tree. Leaves in the tree (here <#A> and <#B>) are atomic
activities. We require child activities to be given in an RDF list, which is explic-
itly terminated. This termination closes the set of list elements and thus allows
for executing workflows under the OWA, which e.g. includes querying whether all
child activities of a parent activity are :done. Yet, for the operational semantics
we also need a direct connection between a parent activity and a child activity,
which we derive from an RDF list using monotonic reasoning, here:

:hasChildActivity(<#root>, <#A>) ∧ :hasChildActivity(<#root>, <#B>)

Instances. Using workflow instances, we can run multiple copies of a workflow
model. A workflow instance consequently consists of instances of the model’s
activities. We model the relation of the instances to their counterparts as shown in
Fig. 1. During and after workflow monitoring/execution, the operational seman-
tics maintain the states of instances in an LDP container. At runtime, the
instances’ states evolve according to the state machine depicted in Fig. 3 (terms
from Fig. 1). Section 5 is about the operationalisation of the evolution.

5 Operational Semantics

In this section, we give operational semantics to our workflow language19 in
rules20. Before we define the rules, we give an overview of what the rules do.

5.1 Overview

The rules fulfil the following purposes (the numbers are only to guide the reader):

I. Retrieve state21

(1) Retrieve the state of the writeable resources in the LDP container, which
maintain the workflow/activity instances’ state

19 In a production environment, access control to the instances’ LDP container needs
to be in place to keep third parties from interfering with the monitoring/execution.

20 A corresponding Notation3 file can be found at http://purl.org/wild/semantics.
21 A benefit of using Linked Data throughout is that we can access the work-

flow/activity instances’ state and the world’s state in a uniform manner.

http://purl.org/wild/semantics
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(2) Retrieve the relevant world state
II. Initialise workflow instances if applicable
(1) Set the root activity’s instance :active
(2) Set the workflow instance :initialised
(3) Create instance resources for all activities in the corresponding workflow

model and set them :initialised
III. Finalise workflow instances if their root node is :done
IV. Execute and observe :active activities

(1) Execution: if an atomic activity turns :active, fire the HTTP request
(2) If the postcondition of an :active activity is fulfilled, set it :done

V. Advance composite activities according to control flow, which includes:
(1) Set a composite activity’s children :active
(2) Advance between children
(3) Finalise a composite activity

5.2 Condition-Action Rules

We next give the rules for the listed purposes. To shorten the presentation,
we factor out those rules that, for workflow execution, fire an activity’s HTTP
request if the activity becomes :active. Those rules are not needed when mon-
itoring. The rules are of the form (the variable method holds the request type):

AtomicActivity(a) ∧ hasHttpRequest(a, h) ∧ http:mthd(h,method)
∧http:requestURI(h, u) ∧ · · · → method(u, . . . )

I. Retrieve State. The following rules specify the retrieval of data where the
rule interpreter locally maintains state. Analogously, other rules retrieve the
world’s state, either by explicitly stating URIs to be retrieved:

true → get(http://example.org/ldpc)

or by following links from data that is already known:

ldp:contains(http://example.org/ldpc, e) → get(e)

II. Initialise Workflow Instances. If there is an uninitialised workflow
instance (e.g. injected by a third party using a post request into the polled
LDP container), the following rules create corresponding resources for the activ-
ity instances and set the workflow instance initialised:

WorkflowInstance(i) ∧ hasState(i, :uninitialised) ∧ workflowInstanceOf(i,m)
∧hasBehaviour(m, a) → post(server:ldpc, activityInstanceOf(<#it>, a)

∧inWorkflowInstance(<#it>, i) ∧ hasState(<#it>, :active))

Also, the workflow instance is set initialised (analogously, we initialise instances
for the activities in the workflow model):

WorkflowInstance(i) ∧ hasState(i, :uninitialised) ∧ workflowInstanceOf(i,m)
→ put(i,WorkflowInstance(i) ∧ hasState(i, :initialised)

∧workflowInstanceOf(i,m))
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III. Finalise Workflow Instances. The done state of the root activity gets
propagated to the workflow instance:

WorkflowInstance(i) ∧ hasState(i, :active) ∧ workflowInstanceOf(i,m)
∧hasBehaviour(m, a) ∧ hasState(m, :done)

→ put(i,WorkflowInstance(i) ∧ hasState(i, :done) ∧ workflowInstanceOf(i,m))

IV. Monitor Atomic Activities. An activity is done if its postcondition holds.

WorkflowInstance(i) ∧ hasState(i, :active) ∧ workflowInstanceOf(i,m)
∧hasDescendantActivity(i, a) ∧ AtomicActivity(a) ∧ hasPostcondition(a, p)

∧ActivityInstance(j) ∧ activityInstanceOf(j, a) ∧ hasState(j, :active)
∧sp:hasBooleanResult(p, true)

→ put(j, activityInstanceOf(j, a) ∧ inWorkflowInstance(j, i) ∧ hasState(j, :done))

To shorten the presentation of the rules in the following, we introduce the fol-
lowing simplifications: We assume that (1) we are talking about an active work-
flow instance, and (2) that the resource representing an instance coincides with
its corresponding activity in the workflow model. (3), the put requests in the
text do not actually overwrite the whole resource representation but patch the
resources by ceteris paribus overwriting the corresponding hasState(·, ·) triple.

V. Advance According to Control Flow. We now give the rules for advanc-
ing a workflow instance according to the basic workflow patterns (WFPs) [25].

WFP 1: Sequence. If there is an active sequential activity with the first activity
initialised, we set this first activity to active:

SequentialActivity(s) ∧ hasState(s, :active) ∧ hasChildActivities(s, c)
∧rdf :first(c, a) ∧ hasState(a, :initialised) → put(a, hasState(a, :active))

We advance between activities in a sequence using the following rule:

SequentialActivity(s) ∧ hasState(s, active) ∧ hasChildActivity(s, c)
∧hasState(c, done) ∧ hasState(n, initialised)

∧rdf :first(l, c) ∧ rdf :rest(l, i) ∧ rdf :first(i, n) → put(n, hasState(n, active))

If we have reached the end of the list of children of a sequence, we regard the
sequence as done (the rule is an example of the exploitation of the explicit
termination of the RDF list to address the OWA):

SequentialActivity(s) ∧ hasState(s, :active) ∧ hasChildActivity(s, c)
∧hasState(c, :done) ∧ rdf : first(l, c) ∧ rdf : rest(l, rdf:nil)

→ put(s, hasState(s, :done))

WFP 2: Parallel Split. A parallel activity consists of several activities executed
simultaneously. If a parallel activity becomes active, all of its components are
set to active:

ParallelActivity(p) ∧ hasState(p, active) ∧ hasChildActivity(p, c)
∧hasState(c, :initialised) → put(c, hasState(c, :active))



434 T. Käfer and A. Harth

WFP 3: Synchronisation. If all the components of a parallel activity are done,
the whole parallel activity can be considered done. To find out whether all com-
ponents of a parallel are done, we mark instances as follows. First, we check
whether the first child element of the parallel activity is done and mark the
element using the state :doneFromListItemOne:

ParallelActivity(p) ∧ hasState(p, :active) ∧ hasChildActivities(p, l)
∧rdf :first(l, c) ∧ hasState(c, :done) → hasState(c, :doneFromListItemOne)

Then, starting from the first activity, we go through the list of child activities
and propagate the mark between the activities in the list if the activities are
done. If the mark reaches the last list element, the whole parallel activity is
done:

ParallelActivity(p) ∧ hasState(p, :active) ∧ hasChildActivity(p, c)
∧rdf :first(l, c) ∧ rdf :rest(l, rdf: nil) ∧ hasState(c, :doneFromListItemOne)

→ put(p, hasState(p, :done))

WFP 4: Exclusive Choice. The control flow element choice implements a choice
between different alternatives, for which conditions are specified. For the evalu-
ation of the condition, we first have to check whether all child activities are in
initialised state, similarly to the rules for WFP 3:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivities(a, l)
∧rdf :first(l, c) ∧ hasState(c, :initialised)

→ hasState(c, :initialisedFromListItemOne)
ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivities(a, l)

∧rdf :first(l, c) ∧ hasState(c, :initialisedFromListItemOne)
∧rdf :rest(l,m) ∧ rdf :first(m, d) ∧ hasState(d, :initialised)

→ hasState(d, :initialisedFromListItemOne)

If the check succeeded, we can evaluate the conditions and set an activity active:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivitiy(a, c)
∧hasState(c, :initialisedFromListItemOne) ∧ hasPrecondition(c, p)
∧rdf :first(l, c) ∧ rdf :rest(l, rdf: nil) ∧ sp:hasBooleanResult(p, true)

→ put(c, hasState(c, :active))

We leave it to the modeller to make sure that the preconditions of the children
of a conditional activity are mutually exclusive.

WFP 5: Simple Merge. If one of the children of a conditional activity is done,
the whole conditional activity is done:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivitiy(a, c)
∧hasState(c, :done) → put(a, hasState(a, :done))
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6 Evaluation

First, we formally show the correctness of our approach to specifying workflows
by presenting the relationship of our operational semantics to the formal spec-
ification of the basic workflow patterns, which we support completely. Second,
to show the applicability of our approach in a real-world setting, we report on
how we used the approach to do monitoring of workflows for human-in-the-loop
aircraft cockpit evaluation in Virtual Reality. Third, we empirically evaluate our
approach to executing workflows in a building simulator.

6.1 Mapping to Petri Nets

Van der Aalst et al. use Petri Nets to precisely specify the semantics of the basic
workflow patterns [25]. We now show correctness by giving a mapping of our
operational semantics to Petri Nets. Similar to tokens in a Petri Net that pass
between transitions, our operational semantics passes the active state between
activities using rules (linking to the WFP rules from Sect. 5.2(V)):

– The rule to advance between activities within a :SequentialActivity may
only set an activity active if its preceding activity has terminated. In the Petri
Net for the Sequence, a transition may only fire if the preceding transition
has put a token into the preceding place, see Fig. 4a and the WFP 1 rules.

– Only after the activity before a :ParallelActivity has terminated, the rule
to advance in a parallel activity sets all child activities active. In the Petri
Net for the Parallel Split, all places following transition T get a token iff
transition T has fired, see Fig. 4b and the WFP 2 rules.

– Only if all activities in a :ParallelActivity have terminated, the rules pass
on the active state. In the Petri Net for the Synchronisation, transition T
may only fire if there is a place with a token in all incoming arcs (cf. Fig. 4c
and the WFP 3 rules).

– In the ConditionalActivity, one child activity is chosen by the rule accord-
ing to mutually exclusive conditions. Similarly, exclusive conditions determine

Fig. 4. Petri Nets for the basic workflow patterns.
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the continuation of the flow after transition T in the Petri Net for the Exclu-
sive Choice, see Fig. 4b and the WFP 4 rules.

– If one child activity of a :ConditionalActivity switches from active to done,
the control flow may proceed according to the rule. Likewise, the transition
following place P in the Petri Net for the Simple Merge (Fig. 4d) may fire iff
there is a token in P , cf. the WFP 5 rules.

Hence, our approach correctly and completely covers the basic workflow patterns.

6.2 Applicability: The Case of Virtual Aircraft Cockpit Design

Together with industry, we successfully applied our approach in aircraft cock-
pit design [16], where workflow monitoring is used to evaluate cockpit designs
regarding Standard Operating Procedures. The monitoring is traditionally done
by Human Factors experts using stopwatches in physical cockpits. We built an
integrated Cyber-Physical System of Virtual Reality, flight simulation, sensors,
and workflows to digitise the monitoring. The challenge was to integrate the dif-
ferent components on both the system interaction and the data level. We built
Linked Data interfaces to the components for the interaction integration, and
integrated the data using reasoning. Our approach allows for workflow monitor-
ing in the Linked Data setting during runtime. The system’s user interface to
model workflows has been evaluated by Human Factors experts highly efficient.

6.3 Empirical Evaluation Using a Synthetic Benchmark

The scenario for our benchmark is from the Internet of Things domain, where
buildings are equipped with sensors and actuators from different vendors. The
devices may be not interoperable, which has been identified by NIST as a major
challenge for the building industry [7]. Balaji et al. aim to raise interoperabil-
ity in Building Management Systems by proposing the Brick ontology [1] to
model buildings and Building Management Systems. We thus assume Read-
Write Linked Data interfaces to a building’s management systems and want to
execute building automation tasks. We consider tasks that go beyond rule-based
automation typically found in home automation (e.g. Eclipse SmartHome22)
or on the web (e.g. IFTTT23). Such tasks require task instance state, e.g.: (1)
flow-based control schemes, (2) automated supervision of cleaning personnel, (3)
presence simulation, (4) evacuation support. We thus model the tasks as work-
flows and access the Building Management Systems integrated via Read-Write
Linked Data interfaces.

The environment for our benchmark is a Linked Data representation of build-
ing 3 of IBM Research Dublin. We built the representation from a static descrip-
tion of building 3 in the Brick ontology24, which covers the building’s parts (e.g.
22 http://www.eclipse.org/smarthome/.
23 http://ifttt.com/.
24 http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/buildin

g instances/IBM B3.ttl.

http://www.eclipse.org/smarthome/
http://ifttt.com/
http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl
http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl
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Table 1. Average runtime [s] for workflows Wn in different numbers of buildings.

W1 W2 W3 W4 W5

1 Building 2 2 6 12 18

10 Buildings 8 9 26 61 75

20 Buildings 12 13 38 80 109

50 Buildings 19 21 61 156 218

rooms) and the building’s systems (e.g. lights and switches). We subdivided the
description into one-hop RDF graphs around each URI from the building and
provide each graph at a corresponding URI. To add state information to the
systems, we add writeable SSN25 properties to the Linked Data interface. To
evaluate at different scales, we run multiple copies of the building.

The workload for our benchmark is the control flow of the five representative
workflow models proposed by Ferme et al. [6] for evaluating workflow engines,
determined by clustering workflows from literature, the web, and industry. We
interpreted the five workflow models using the four automation tasks presented
above: task 1 corresponds to the first two workflow models; the subsequent tasks
to the subsequent workflow models. We assigned the activities in the tasks to
two classes: monitoring activities that are checks (e.g. a sensor value), where
we attached a postcondition, and execution activities that enact change (e.g.
turn on a light), where we attached an HTTP request. For repeatability, the
postconditions always hold and the requests do not interfere with the workflow.

The set-up for our evaluation consists of a server with a 32-core Intel Xeon E5-
2670 CPU and 256 GB of RAM running Debian Jessie. We deploy the operational
semantics and required OWL LD reasoning on Linked Data-Fu 0.9.1226. We
include reasoning as indicated by the Brick ontology. We maintain building and
workflow state in LDP containers, LDBBC 0.0.627. We add workflow instances
each 0.2 s after 20 s of warm-up time. The workflow models can be found online28.

The results of our evaluation can be found in Table 1. Varying the number of
activities (W1–W5), and varying the number of devices (proportional to build-
ings), we observe linear behaviour. The linear behaviour stems from the number
of requests to be made, which depends on the number of activities and work-
flow instances. With no reusable data between buildings, there is no benefit in
running the workflows for all buildings on one engine. Instead, we could run one
engine per building, thus mirroring the decentralisation of data.

25 http://www.w3.org/TR/vocab-ssn/.
26 http://linked-data-fu.github.io/.
27 http://github.com/kaefer3000/ldbbc.
28 http://people.aifb.kit.edu/co1683/2018/iswc-wild/.

http://www.w3.org/TR/vocab-ssn/
http://linked-data-fu.github.io/
http://github.com/kaefer3000/ldbbc
http://people.aifb.kit.edu/co1683/2018/iswc-wild/
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7 Conclusion

We presented an approach to specify, monitor, and execute applications that
builds on distributed data and functionality provided as Read-Write Linked
Data. We use workflows to specify applications, and thus defined a workflow
ontology and operational semantics. We aligned our approach to the basic work-
flow patterns, reported on an application in Virtual Reality, and evaluated using
a synthetic benchmark in an Internet of Things scenario.

The assumptions of the environment of Read-Write Linked Data present
peculiar challenges for a workflow system: We work under the OWA and without
events as change notifications. Our approach addresses the challenges without
adding assumptions to the architecture of the environment, but by modelling a
closed world where necessary and by using polling to access the world’s state.

We believe that our approach, which brings workflows in a language that
is closely related to the popular BPMN notation to Read-Write Linked Data,
enables non-experts to engage in the development of applications that can be
verified, validated, and executed.
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Eshuis and Philip Hake. This work is supported in part by the EU’s FP7 (in i-VISION,
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