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Abstract. We present an unsupervised approach to process natural lan-
guage questions that cannot be answered by factual question answering
nor advanced data querying, requiring instead ad-hoc code generation
and execution. To address this challenging task, our system, AskCO, per-
forms language-to-code translation by interpreting the natural language
question and generating a SPARQL query that is run against CodeOn-
tology, a large RDF repository containing millions of triples representing
Java code constructs. The query retrieves a number of Java source code
snippets and methods, ranked by AskCO on both syntactic and semantic
features, to find the best candidate, that is then executed to get the cor-
rect answer. The evaluation of the system is based on a dataset extracted
from StackOverflow and experimental results show that our approach is
comparable with other state-of-the-art proprietary systems, such as the
closed-source WolframAlpha computational knowledge engine.
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1 Introduction

Question Answering over Linked Data and ontologies allows leveraging struc-
tured data and Natural Language Processing to give a precise answer to the
input provided by the end user. However, most of the information available in
the Web is organized in the form of unstructured or semi-structured data, thereby
being difficult to be automatically processed by such approaches. A paradigmatic
example is represented by massive open source code repositories, where source
code is not readily available to be queried as Linked Open Data, despite the
great potential for the development of computational knowledge engines capa-
ble of leveraging this impressive amount of information. To overcome this issue,
we have recently introduced CodeOntology1 [1,2], as a resource aimed at allow-
ing the adoption of the Semantic Web technology stack within the domain of

1 http://codeontology.org.
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software development and engineering. CodeOntology consists of two main con-
tributions (i) an ontology modeling object-oriented code constructs and (ii) a
parser which is capable of analyzing Java source code and serializing it into RDF
triples. CodeOntology also includes a dataset containing millions of RDF triples
extracted from OpenJDK [3].

Following this research line, in this paper we introduce an algorithmic app-
roach that addresses the task of Natural Language Programming by employ-
ing CodeOntology for Question Answering over source code. Hence, we target
a Question Answering problem where the answer to the input question is not
directly available in the data, but the dataset contains the information that is
needed to compute the correct answer. This challenging task is accomplished
by performing an unsupervised semantic parsing of natural language utterances
into a Java source code, which can be automatically executed to retrieve the
answer to the input question.

We discuss two approaches: (i) a fast coarse-grained approach which only
supports natural language commands corresponding to the invocation of a single
method, and (ii) a fine-grained approach which is based on dependency parsing
and is capable of tagging substrings of the input question with entities from
CodeOntology, thereby supporting the execution of more complex expressions,
involving the invocation of multiple methods. Within the coarse-grained app-
roach, we propose a simple technique to rank entities available in CodeOntology
(specifically, Java methods), based on syntactic and semantic features. On the
one hand, the first approach is aimed at providing a natural language interface
to Java source code, focusing on applications for developers, such as Computer
Assisted Coding tools pluggable within IDEs. Hence, we assume that the user
can specify a description of the method to be invoked and the actual arguments.
These arguments can be of any arbitrary type, including user-defined classes. On
the other hand, the fine-grained approach is aimed at providing a computational
knowledge engine for Question Answering and other end-user applications, such
as speech-driven tools like Amazon Alexa. Hence, we assume the input is a sin-
gle natural language question and the actual arguments are provided within the
question as literals, thereby limiting the type of the parameters that the user
can effectively specify.

Experimental results are based on a dataset extracted from StackOverflow
and show that our approach is comparable with state-of-the-art systems, such as
the proprietary closed-source WolframAlpha computational knowledge engine.
Thus, the main contributions of this work are:

– we introduce an unsupervised approach capable of mapping natural language
utterances into Java source code, by leveraging the possibility of extracting
Linked Data from any Java project;

– we propose a technique to rank entities from CodeOntology (Java methods)
based on syntactic and semantic features;

– we provide a dataset derived from simple questions extracted from Stack-
Overflow, to evaluate the performances of our system2.

2 available at: https://doi.org/10.6084/m9.figshare.6071663.

https://doi.org/10.6084/m9.figshare.6071663
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We remark that, while the paper focuses on OpenJDK methods only, the
resulting system, that we called AskCO, is general enough to be applied with
any custom set of Java repositories.

2 Related Work

Natural language represents certainly one of the easiest ways to interact with a
computer for humans. In Question Answering over Linked Data (QALD), indeed,
natural language questions are translated into SPARQL queries to find fac-
tual information or more advanced statistics from, e.g., datacubes [4]. Although
falling in the area of QALD, our work focuses on questions for which no answer
can be found by only querying a repository, since the correct answer needs to be
computed by generating and executing code.

In this sense, this work resembles more closely related approaches to natu-
ral language querying in software engineering. A large body of work has been
done to allow software engineers to manage information about large software
systems. For instance, LaSSIE [5] was a prototype tool which made use of a
frame-based description language, as well as explicit knowledge representation
and reasoning, to address the problem of discovering and learning new informa-
tion about an existing system. LaSSIE was also embedded with a simple natural
language interface based on a taxonomy of the domain and on a lexicon, which
included the words known to the system. This work has inspired several more
recent research projects, such as [6], where Semantic Web technologies have been
applied to support guided-input natural language queries concerning static source
code information. The presented approach allows importing knowledge about
the evolution of a software system into a RHDB (Release History Database),
which is augmented with ontological information on source code. Although sim-
ilar to our work, the expressiveness of this approach is in fact limited by the
kind of questions it supports, as it relies on Ginseng [7] to constrain the input
and answer quasi-natural language queries by leveraging a multi-level grammar
which defines the structure of supported sentences. Similarly, in [8] an unam-
biguous and controlled subset of natural language with a restricted grammar
and a domain-specific vocabulary is used to run queries for static information
on source code. On the other hand, more advanced approaches have been devel-
oped to support unconstrained natural language queries. In [9], indeed, natural
language processing (NLP) techniques are applied to translate free questions to
concrete parameters of a third-party query engine.

All the approaches outlined so far are mainly aimed at retrieving static infor-
mation like specific method calls or write access to certain fields. Our technical
contribution describes instead a novel algorithm which brings together NLP and
Semantic Web technologies to translate natural language into object-oriented
source code. Several research prototypes have been developed to enable the
automatic understanding of a natural language description of a program. For
instance, Metafor [10], based on concepts from Programmatic Semantics [11],
is capable of generating class descriptions with attributes and methods. How-
ever, its expressiveness is still limited, in the sense that it does not feature the
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possibility of processing arbitrary English statements. Instead, it can parse a
reasonably expressive subset of the English language, to create scaffolding code
fragments that can be used to assist the development process. In this sense, it is
deeply different from our approach, which aims at mapping any natural language
question into the execution of methods extracted from CodeOntology.

More recently, in 2017, SemEval hosted an ambitious challenge [12], aiming
at supporting the interaction between users and software APIs, micro-services
and applications, using natural language. Most of the work in this area has
focused on supervised approaches [13], thereby requiring a dataset mapping nat-
ural language to a formal meaning representation. However, this task is different
from any previous work related to semantic parsing of natural language com-
mands, as it involves generic programming scenarios and a more comprehensive
knowledge base of possible actions. A related problem was also addressed in [14],
which targeted the creation of an if-this-than-that recipe on the IFTTT3 plat-
form. The task outlined within the SemEval competition, however, is even more
challenging, as it is not limited to if-then rules, and it also involves instantiat-
ing parameter values. Nevertheless, both approaches are placed in a simplified
landscape with respect to our system, which aims at mapping natural language
utterances into a real-world and Turing-equivalent programming language.

3 Coarse-Grained Approach

This section describes the coarse-grained approach, which is meant to allow the
execution of Java methods, given a natural language description of the intended
behavior. The output of such approach is a ranking of the methods in the dataset,
based on a metric involving both syntactic and semantic measures. This approach
is preliminary to the fine-grained one, which is instead designed to answer more
complex questions.

3.1 A Natural Language Interface to OpenJDK

Although CodeOntology already features the possibility of querying source code
in a semantic framework powered by the Web of Data, this capability is in fact
limited by the complexity of SPARQL queries. Hence, the coarse-grained app-
roach is aimed at providing an easy-to-use and intuitive natural language inter-
face to the entities made available by CodeOntology. We target a RDF repository
extracted from OpenJDK 8 [3], containing millions of RDF triples about struc-
tural information on source code, actual source code as literals, comments, and
semantic links to DBpedia [15] resources.

In particular, we want to allow the end-user to remotely search and execute
methods available in the dataset, without necessarily knowing the signature of
the method, but only its intended behavior. Thus, we assume that the end-user
can provide: (i) a natural language description of the method; (ii) an unsorted

3 https://ifttt.com/.

https://ifttt.com/
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list of the actual parameters, optionally including, if the method is not static,
the target instance of the method invocation; (iii) the expected return type.
The system should then run a SPARQL query on the RDF dataset, search-
ing for methods from OpenJDK, whose signature is compatible with the values
specified by the user. The retrieved results are subsequently ranked to select
the method which most closely matches the natural language description. The
selected method is then invoked on the specified input parameters, and the result
is then returned to the user, along with the ranking produced by the system.
Figure 1 shows the result of the application of the ranking process within the
coarse-grained approach.

Fig. 1. Example of a simple application of the coarse-grained approach.

3.2 Method Ranking

The ranking of the methods in the dataset relies on the following attributes: (i)
the name of the method; (ii) the Javadoc comment associated with the method;
(iii) the name of the declaring class; (iv) semantic links to DBpedia, already
provided by CodeOntology. Several similarity measures are used to produce the
final ranking. Such measures are used both at syntactic and semantic level.

Syntactic measures are based on the name of the method, the name of the
declaring class and code comments. In particular, the natural language descrip-
tion of the behavior of the method is pre-processed using a standard NLP pipeline
which performs sentence splitting, tokenization and lemmatization. Next, we
compute the following measures:

– LS: normalized Levenshtein similarity against the name of the method;
– COM: n-gram overlap against the Javadoc comment related to the method;
– CN: n-gram overlap against the name of the declaring class.

More precisely, given two sets S1 and S2 of consecutive n-grams from two dif-
ferent sentences, the n-gram overlap is defined as:

ngo(S1, S2) = 2 ·
(

|S1|
|S1 ∩ S2|

+
|S2|

|S1 ∩ S2|

)−1

.
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Thus, the n-gram overlap is computed as the harmonic mean of the degree to
which the second sentence covers the first and the degree to which the first
sentence covers the second. In practice, for n-grams we set n = 1. On the other
hand, the Levenshtein distance dL between two strings is defined as the minimum
number of single-character edits, required to change one string into the other.
Since we need a similarity value in the range between 0 and 1, we compute the
normalized Levenshtein similarity as:

sL(s1, s2) = 1 − dL(s1, s2)
max{|s1|, |s2|}

.

Levenshtein distance and n-gram overlap are used to match methods from
OpenJDK and the natural language command provided by the user at a syntac-
tic level. To incorporate semantics into the ranking process, we leverage DBpedia
links readily available in the dataset and word embeddings to comute the fol-
lowing features:

– NED: ratio of the DBpedia links shared by the comment of the method and
the natural language command;

– W2V: cosine similarity between the mean vector associated with the com-
ment of the method and the mean vector associated with the natural language
command.

More precisely, we make use of TagMe [16], to perform Named Entity Disam-
biguation on the input text and retrieve a set of links to DBpedia resources.
Each method available in the dataset provides DBpedia links generated using
the same approach, applied on the Javadoc comment. Hence, we use the ratio
of the shared links as a measure of semantic relatedness between each retrieved
method and the input command.

Moreover, we apply a Word2Vec [17] pre-trained model to retrieve 300-
dimensional word vectors from each word in both the natural language spec-
ification provided by the user and the comment associated with methods in
CodeOntology. The cosine similarity between the mean vector corresponding to
the input command and the mean vector associated with each Java method is
used as another semantic measure. The final score applied within the ranking
process is the average value of the syntactic and semantic measures described so
far.

4 Fine-Grained Approach

As we have already mentioned, the fine-grained approach is aimed at dealing with
more complex natural language utterances, possibly involving the execution of
more methods. Given a question in natural language, this approach is capable
of parsing the input question into a Java source code which gets executed to
produce the desired answer. This section details how this approach actually
works and how it can be used for question answering over source code.
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4.1 Dependency Graph Unfolding

Given a natural language question, the fine-grained approach starts by apply-
ing Stanford CoreNLP [18] to perform dependency parsing. We assume that the
question provided by the user may include primitive literals, such as string liter-
als, integers, Booleans, and parameters of type double. Hence, before parsing the
input sentence, care must be taken to replace string literals with a placeholder, in
order to prevent the dependency parser from processing also actual arguments.
The output of such process is the graph of the dependencies, as shown in Fig. 2.

Fig. 2. Result of dependency parsing on a simple input question.

This graph is unfolded into a tree and pruned to remove nodes that are not
useful for our purposes. In particular, we allow merging two nodes, depending on
the nature of the dependency between the corresponding words. For instance,
multiword expressions (MWEs) are merged into a single node, and, similarly,
adjectival or adverbial modifiers are joined with the word they refer to. We also
allow removing leaf nodes such as conjunctions, determiners and punctuation.

The result is further post-processed, to ensure that all the literal arguments
specified by the user correspond to some leaf node of the tree and that no subtree
is repeated. Figure 3 shows the result of the application of this approach to the
graph depicted in Fig. 2.

4.2 Mapping to a Feasible Execution Tree

The unfolding of the dependency graph results in a tree, such that the set of
nodes N can be partitioned into two subsets L and M, where (i) L is the subset
of nodes corresponding to literal actual arguments, (ii) M is the subset of nodes
corresponding to natural language utterances denoting a method invocation, (iii)
each node in L is a leaf, (iv) N = L ∪ M and L ∩ M = ∅.

We want to obtain a tree where each node i ∈ M is labeled with a method
ranking Ri, that is a sequence (m1, s1) · · · (mn, sn), such that (i) mi is a Method
for all i = 1 . . . n, (ii) si ∈ [0, 1] for all i = 1 . . . n, (iii) i < j ⇒ si ≥ sj . To do
this, we need to query CodeOntology and rank methods using the coarse-grained
approach. However, we only have to select methods whose signature is compatible
with the structure of the tree and with the actual arguments provided by the
user. Hence, we also label each node with the set of the types it can assume.
To this end, we define the set Types = {t ∈ K | t : T ∧ T 	 Type}, as the
set of all types available in our knowledge base K. Next, we define the function
types : N → 2Types, such that:
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types(i) =

{
t if i ∈ L and t is the type of i

returnTypes(Ri) if i ∈ M
,

where returnTypes(Ri) can be computed as:

returnTypes(R) =

⎧⎪⎨
⎪⎩

{r} ∪ returnTypes(R′) if R = R′(m, s) and
m has return type r

∅ if R = []
.

To assign these type labels to the nodes, we start from the leaves, as each
node in L can be labeled with the CodeOntology resource associated with its
type. Next, we can recursively label with a set of types also each node in M, by
employing the following approach. We select the nodes such that their children
have already been labeled with a set of types and we query CodeOntology for
methods that are compatible with the specified arguments. The list of arguments
may be unsorted and may also include the target instance of the method invo-
cation. The retrieved methods are then ranked as described in Sect. 3.2 and the
corresponding node is labeled with the set of their return types. Algorithm 1
details the described approach.

Algorithm 1. RankOnTree(i)
1 if i ∈ L then
2 Let t be the type of i
3 types(i) ← {t}
4 else
5 Let l = [l1, . . . , ln] be the list of the children of i

6 foreach lj ∈ l do
7 RankOnTree(lj)
8 end

9 Let t = [t1, ..., tn] be a list such that tj = types(lj) for each lj ∈ l
10 Query CodeOntology for methods whose signature is compatible with t
11 Let Ri be the ranking of the resulting methods, computed using the

coarse-grained approach
12 types(i) ← returnTypes(Ri)

13 end

After applying Algorithm 1 on the result of the dependency graph unfolding,
we obtain a new tree structure, where each node in M is labeled with a ranking
of methods retrieved from CodeOntology. Figure 3 shows an example of such a
tree.

Now, we want to select a method from each ranking, in such a way that the
combination of all the selected methods is feasible, meaning that it corresponds
to compilable Java source code. At the same time, however, we also need to
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Fig. 3. Mapping to a feasible execution tree.

maximize the total score associated with selected methods. Hence, we have to
solve the following integer linear programming problem, where xij = 1 if the
j-th method in the ranking Ri is selected, and xij = 0 otherwise:

Maximize
∑
i∈M

∑
(mij ,sij)∈Ri

xij · sij (1)

subject to the following constraints: (i) xij ∈ {0, 1}, (ii)
∑

j xij = 1, for all
i ∈ M, 1 ≤ j ≤ |Ri| and (iii) the combination of the selected methods can be
compiled.

If a solution to this problem exists, then we can turn the tree into Java source
code, which gets executed to answer the original question. Moreover, the average
score of selected methods can be interpreted as a measure of the confidence level
about the correctness of the solution. The result of such approach is shown in
Fig. 3, where selected methods have been highlighted.

4.3 Greedy Search

The algorithmic approach described up to this point may fail to return a correct
answer, whenever the tree produced by unfolding the dependency graph cannot
be matched to the Java source code corresponding to the input question. In
particular, we want to improve the algorithm, so that it is robust to two kinds
of situations: (i) the tree resulting from the process described in Sect. 4.1 is too
detailed, meaning that it has more nodes corresponding to method invocations
than needed, or (ii) the dependency graph produced by Stanford CoreNLP con-
tains some errors, which can be detected by leveraging knowledge about methods
in CodeOntology and typing. There are several ways to extract a tree from the
input sentence and, for each tree, several combinations of methods need to be
explored. This creates an intractable search space for possible solutions, and,
subsequently, we cannot afford an exhaustive search. Thus, we apply a heuristic
approach that, starting from the output of the process described in Sect. 4.2,
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performs a greedy search for better solutions. We define the following move
operators that are used to turn a tree into a different configuration:

– Merge: two adjacent nodes in M are merged, the natural language utterances
corresponding to such nodes are joined and the children of the newly created
node are the union of the children of the merged nodes;

– Push: a node in M is pushed down or up a level in the tree, along with all
its children;

– MoveLiterals: the children in L of a node in M are moved to a different
node in M.

Intuitively, the first move allows the algorithm to deal with trees where a single
method invocation is spread across multiple nodes, while the other operators are
used to handle errors in dependency parsing.

We define the distance between two trees T and T ′, denoted as TED(T , T ′),
as the minimum number of moves required to turn one tree into the other. Next,
we denote the normalized distance as:

NTED(T , T ′) =
TED(T , T ′)

max{|T |, |T ′|} ,

where |T | is the total number of nodes in T .
Starting from an initial tree T0, produced as described in Sect. 4.2, the algo-

rithm evaluates all the possible defined moves and applies a greedy search with
a Best-Improvement strategy, in order to maximize, under the same constraints
defined for Eq. 1, the following objective function:

z(Tk) =
1

|Mk|
·

∑
i∈Mk

∑
(mij ,sij)∈Rk

i

xij · sij − λ · NTED(Tk, T0), (2)

Fig. 4. High-level view of the architecture of the system.
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where λ ∈ [0, 1] is a constant, Mk is the set of non-literal nodes in Tk and Rk
i

is the method ranking associated with node i in Tk. Overall, Eq. 2 is structured
as Eq. 1, with a penalization term which decreases the objective value for trees
that are too different from the original tree T0. In practice, we set λ to 0.5.
The algorithm stops when a local optimum is reached and no move can be
applied to improve the objective value. Figure 4 shows a high-level view of the
architecture of the system, which is available on GitHub at https://github.com/
codeontology/question-answering.

5 Experiments

This section provides an evaluation for both the coarse-grained and the fine-
grained approaches. Experimental results show that both techniques can be effec-
tively applied on a RDF dataset extracted from OpenJDK 8 [3], with promising
results.

5.1 Method Ranking Evaluation

The system implemented for the coarse-grained approach aims at retrieving and
ranking Java methods defined within the OpenJDK 8 source code, given a natu-
ral language description of the behavior of the method. Providing an evaluation
for this coarse-grained ranking of Java methods is challenging, because we are not
aware of any dataset pairing natural language commands, with a corresponding
set of relevant methods from OpenJDK. Hence, we have extracted a benchmark
dataset containing simple questions discussed on StackOverflow4.

The dataset has been generated by retrieving the most popular questions
about the Java programming language, which have been manually filtered to
select only the top 122 questions that can be answered with the invocation of a
single method from OpenJDK.

For some questions, we may have more than one relevant method, so
the dataset has been further manually enriched with missing methods. For
instance, the natural language command “convert a string to an integer” is
associated to two methods, namely the method java.lang.Integer.parseInt
(java.lang.String) and the method java.lang.Integer.valueOf(java.
lang.String).

Overall, for more than 80% of the questions there is only one relevant method,
while some question has even 3 or 4 relevant methods. The dataset is available
on figshare5 under Creative Commons Attribution 4.0 license.

We experiment several combinations of the syntactic and semantic features
defined in Sect. 3.2. Table 1 reports the experimental results obtained for the
coarse-grained approach. We evaluate the performance of the system based on
the Mean Average Precision (MAP) obtained by the produced rankings. How-
ever, it is crucial that the first method in the ranking is correct, as it is invoked
4 https://stackoverflow.com/.
5 https://doi.org/10.6084/m9.figshare.6071663.

https://github.com/codeontology/question-answering
https://github.com/codeontology/question-answering
https://stackoverflow.com/
https://doi.org/10.6084/m9.figshare.6071663
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by the coarse-grained system. Thus, we also compute the precision at 1 for each
ranking, and we report the mean result in Table 1 (MAP@1).

Table 1. Experimental results on method ranking

Features MAP@1 MAP

Syntactic features LS 0.697 0.776

LS + CN 0.713 0.785

LS + COM 0.861 0.891

LS + CN + COM 0.869 0.897

Semantic features NED 0.607 0.714

W2V 0.738 0.818

W2V + NED 0.754 0.822

Syntactic + Semantic features LS + W2V 0.795 0.852

LS + W2V + NED 0.803 0.861

LS + CN + COM + W2V 0.902 0.921

LS + CN + COM + W2V + NED 0.902 0.923

As we can see, the best results are obtained by boosting syntactic features
with semantics. The coarse-grained approach to the ranking of Java methods,
in this case, achieves a Mean Average Precision of 0.923. At the same time, the
system is capable of finding and invoking the correct method for the majority
of the natural language commands available in the dataset, obtaining a MAP@1
of 0.902.

5.2 Question Answering Evaluation

Experiments on the ranking of Java methods provide a partial evaluation also
for the fine-grained approach, as method ranking is the most important step for
parsing natural language questions involving the invocation of multiple meth-
ods. However, to provide a further evaluation of our fine-grained system, we
perform experiments on another benchmark dataset6 we created, containing 120
questions on mathematical expressions and string manipulation. We can classify
each question in the dataset by the number of methods required to provide the
correct answer. We obtain that the dataset contains:

– 16 questions requiring the invocation of 1 method;
– 63 questions requiring the invocation of 2 methods;
– 36 questions requiring the invocation of 3 methods;
– 5 questions requiring the invocation of 4 methods.

Hence, the majority of the questions involves the invocation of 2 methods and,
on average, 2.25 methods per question are required.
6 available online at: https://doi.org/10.6084/m9.figshare.6071729.

https://doi.org/10.6084/m9.figshare.6071729
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We apply a threshold t ∈ [0, 1] on the objective value defined by Eq. 2,
in order to detect questions that our system is not able to process correctly.
When t = 0, then the system will provide an answer to all questions in the
dataset, while t = 1 means that the system basically refuses to process any
question. Figure 5 summarizes the performances of the system in response to
changes in the value of the threshold. As we can see, when t = 0 the system
is capable of answering correctly 91% of the questions in the dataset. However,
we can increase precision over processed questions using a higher threshold. In
particular, setting a threshold t = 0.15 allows to get a precision over processed
questions of 0.94, while leaving the global result unchanged. When precision over
processed questions eventually reaches 1, then global precision equals the rate
of processed questions, as clearly shown in Fig. 5.

Fig. 5. Performances of the system for different values of the threshold.

It is also interesting to discuss the average size of the rankings, which con-
tain all methods from OpenJDK whose signature is compatible with the actual
arguments specified in the natural language question. At this remark, we notice
that, on average, the rankings of methods produced by the fine-grained approach
on this dataset contain 246.5 methods. The longest ranking includes 677 meth-
ods, while the shortest one has 24 methods. Hence, the distribution has a high
standard deviation equal to 176.7 methods.

We can compare our approach with the results obtained by the WolframAl-
pha computational knowledge engine7. Of course, our system and WolframAlpha
have different capabilities. On the one hand, WolframAlpha can answer a wide
range of complex open-domain questions, which cannot be answered by simply
invoking methods from OpenJDK. On the other hand, our system is capable of
executing natural language commands which are certainly out of the scope of
WolframAlpha. However, both approaches should be able to process and answer
questions involving mathematical expressions and string manipulation. Table 2
shows the experimental results of the comparison between the systems.

WolframAlpha was able to process 108 out of the 120 questions in the dataset,
achieving a global precision of 0.82 and a precision over processed questions of
7 https://www.wolframalpha.com/.

https://www.wolframalpha.com/


298 M. Atzeni and M. Atzori

Table 2. Experimental results for the fine-grained approach

QA over CodeOntology WolframAlpha

Number of questions 120 120

Processed questions 116 108

Correct answers 109 98

Precision (global) 0.91 0.82

Precision (processed questions) 0.94 0.91

0.91. On the other hand, our approach based on CodeOntology allows processing
116 questions and 109 of such items have been answered correctly. Hence, on this
task, the implemented system outperforms WolframAlpha, reaching a precision
over processed questions of 0.94.

Interestingly, we noticed that WolframAlpha fails in computing the correct
result for some simple queries, as shown in Table 3.

Table 3. Results obtained by WolframAlpha on a set of simple queries

WolframAlpha

Input Interpretation Result

Add 2 to 4 2 + 4 6

Add 2 to the max between 3 and 4 2max{3,4} 16

Add 2 to the sum of 1 and 3 21+3 16

What is the uppercase of “abc”? ToUpperCase[“abc”] "ABC"

Convert “abc” to uppercase ToUpperCase[“Convert \“abc\” to”] "CONVERT\"ABC\"TO"

What is the length of “abcd”? StringLength[“abcd”] 4

Sum 1 to the length of “string” - -

For instance, despite the system is capable of correctly interpreting com-
mands like “Add 2 to 4”, it does not parse successfully slightly more complicated
sentences such as “Add 2 to the max between 3 and 4”.

On the other hand, our approach is able to process correctly the same queries,
as shown in Table 4.

Moreover, we can classify questions depending on whether both the systems,
only one of them or none of them was able to provide the correct answer. Such
categorization is shown in Table 5.

We can use the values reported in Table 5 to perform a McNemar exact test
by comparing the case where the two systems provide discordant results (b and
c), to a binomial distribution with size parameter n = b + c and p = 0.5. The
test shows that there exists a statistically significant difference between the two
systems, with a confidence level of 99.8%.
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Table 4. Results obtained by our approach on a set of simple queries

AskCO

Input Interpretation Result

Add 2 to 4 Math.addExact(2,4) 6

Add 2 to the max between 3 and 4 Math.addExact(2,Math.max(3,4)) 6

Add 2 to the sum of 1 and 3 Math.addExact(2,Integer.sum(1,3)) 6

What is the uppercase of “abc”? "abc".toUpperCase() "ABC"

Convert “abc” to uppercase "abc".toUpperCase() "ABC"

What is the length of “abcd”? "abcd".length() 4

Sum 1 to the length of “string” Long.sum(1,"string".length()) 7

Table 5. Comparison between AskCO and WolframAlpha

WolframAlpha (correct) WolframAlpha (failed)

AskCO (Correct) a = 97 b = 12 109

AskCO (Failed) c = 1 d = 10 11

98 22 120

6 Conclusion

This paper introduces two approaches for answering end-user questions on the
execution of Java methods. On the one hand, our coarse-grained approach only
allows mapping natural language commands to the execution of a single method,
but it supports arguments of any arbitrary type, including user-defined classes.
On the other hand, the fine-grained approach can handle more complex ques-
tions, possibly requiring the execution of multiple methods. However, the input
of this approach is a single natural language question which includes the actual
arguments as literals, thereby limiting the kinds of the parameters that can
be passed by the user. Overall, experimental results show that the approach is
promising and, subsequently, it can be effectively used for semantic code search
and reuse over CodeOntology.
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