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Abstract. Ontology summarization aspires to produce an abridged ver-
sion of the original data source highlighting its most important concepts.
However, in an ideal scenario, the user should not be limited only to static
summaries. Starting from the summary, s/he should be able to further
explore the data source requesting more detailed information for a par-
ticular part of it. In this paper, we present a new approach enabling the
dynamic exploration of summaries through two novel operations zoom
and extend . Extend focuses on a specific subgraph of the initial sum-
mary, whereas zoom on the whole graph, both providing granular infor-
mation access to the end-user. We show that calculating these operators
is NP-complete and provide approximations for their calculation. Then,
we show that using extend, we can answer more queries focusing on
specific nodes, whereas using global zoom, we can answer overall more
queries. Finally, we show that the algorithms employed can efficiently
approximate both operators.

1 Introduction

The recent explosion of the Web of Data and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF
datasets [6]. These datasets often have extremely complex schemas, which are dif-
ficult to comprehend, limiting the exploitation potential of the information they
contain. As a result, there is an increasing need to develop methods and tools
that facilitate the quick understanding and exploration of these data sources
[9,19].

To this direction, many approaches focus on generating ontology summaries
[21,24,25,29]. Ontology summarization [30] is defined as the process of distilling
knowledge from an ontology in order to produce an abridged version. Although
generating summaries is an active field of research, most of the works focus only
on identifying the most important nodes, exploit limited semantic information or
produce static summaries, limiting the exploration and the exploitation potential
of the information they contain. In addition, although exploration operators over
summaries have already been identified as really useful (e.g. [15]), the available
approaches so far are limited, expanding only the hierarchy and the connections
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of selected nodes [11]. As a result, there is an increasing need to develop methods
and tools in order to facilitate the understanding and exploration of various data
sources, through exploration operators on summaries.

Consider for example that we would like to get a quick view of the DBpe-
dia version 3.8 shown in Fig. 1(a). By visualizing the graph of the schema, it is
difficult to understand the contents of the KB. Even if we highlight the most
representative nodes (the red ones), according to some importance measure (e.g.
Betweenness) the problem persists. Now consider selecting the top-k most rep-
resentative nodes and connecting them. The result is shown in Fig. 1(b). Here,
we can better understand the contents of the DBpedia v3.8. However, still the
user might find the presented information overwhelming and s/he would like
to see less information, focusing only on the top-10 nodes. Ideally, s/he should
be able to zoom-in and zoom-out at will in the presented graph to understand
the contents at a selected granularity level. More than this, s/he might want to
have more detailed information not only on the whole schema graph but on a
selected subset of it. This could happen by selecting some nodes, requesting more
details on those. Those details could be offered in terms of showing other nodes
dependent on the selected ones as shown in Fig. 1(b) (green nodes). Although
exploration operators over summaries have already been identified as useful (e.g.
[15]), the available approaches are limited, expanding only the hierarchy and the
connections of the selected nodes.

Fig. 1. The DBpedia 3.8 schema graph (a) and a schema summary (b) generated
using [17]. (Color figure online)

Motivated by the lack of an effective method to explore KBs starting from
summaries, we have developed RDFDigest+. RDFDigest+ is a system that
transparently and efficiently handles exploratory operations on large KBs. In
its core, it employs an algebra where two operators are treated as first-class
citizens in various exploration scenarios. Our algebra contains the extend and
the zoom operators with particular semantics. Extend focuses on a specific sub-
graph of the initial summary, whereas zoom on the whole graph, both providing
granular information access to the end-user.
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More specifically, in this paper, we focus in RDFS ontologies and demonstrate
an efficient and effective method to enable exploration of RDFS KBs, using
schema summaries that can be extended and zoomed according to user selections.
Our contributions are the following:

– We present RDFDigest+, a novel system that is able to generate summaries,
enabling further exploration using zoom and extend operations.

– Summary generation is a two-steps process. First, all schema nodes are ranked
according to various measures, and then, the top-k selected nodes are linked
using edges that introduce the minimum number of additional nodes over the
initial schema graph.

– Over these generated summaries, we enable zoom-in and zoom-out opera-
tions to get granular information, adding more important nodes or removing
existing ones from the generated summary.

– In addition, through the extend operator, we allow selecting a subset of the
presented nodes to visualize other dependent nodes.

– We provide algorithms for calculating the aforementioned operators on a given
schema graph and we show that the problem is NP-complete. To this end, we
provide effective and efficient approximations as well.

– We demonstrate the added value of these operators, evaluating summary’s
ability to answer the most-frequent real users queries, and we show that the
approximate algorithms proposed can efficiently approximate both operators.

To our knowledge, this is the first approach that combines summaries with
both zoom and extend operations, enabling effectively and efficiently the granu-
lar exploration of a KB. The rest of this paper is structured as follows: In Sect. 2,
we present preliminaries and, in Sect. 3, we provide more details on schema sum-
marization. Then, in Sect. 4, we introduce our ontology exploration operations.
In Sect. 5, we present our experimental evaluation and, in Sect. 6, we discuss
related work. Finally, in Sect. 7, we conclude this paper and present directions
for further work.

2 Preliminaries

In this paper, we focus on RDFS KBs, as RDFS is among the widely-used
standards for publishing and representing data on the Web. Our approach han-
dles OWL ontologies as well, considering however only the RDFS part of these
ontologies. The representation of knowledge in RDF is based on triples of the
form (subject, predicate, object). RDF datasets have attached semantics through
RDFS [1], a vocabulary description language. Representation of RDF data is
based on three disjoint and infinite sets of resources, namely: URIs (U), literals
(L) and blank nodes (B). We impose typing on resources, so we consider three
disjoint sets of resources: classes (C ⊆ U ∪ B), properties (P ⊆ U), and indi-
viduals (I ⊆ U ∪ B). The set C includes all classes, including RDFS classes and
XML datatypes (e.g., xsd:string, xsd:integer). The set P includes all properties,
except rdf:type, which connects individuals with the classes they are instantiated
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under. The set I includes all individuals, but not literals. In addition, our app-
roach adopts the unique name assumption, i.e. resources identified by different
URIs are different.

Here, we will follow an approach similar to [26], which imposes a convenient
graph-theoretic view of RDF data that is closer to the way the users perceive
their datasets. As such, we separate between the schema and the instances of
an RDFS KB, represented in separate graphs (GS and GI , respectively). The
schema graph contains all classes and the properties the classes associated with
(via the properties domain/range specification); multiple domains/ranges per
property are allowed, by having the property URI be a label on the edge, via a
labeling function λ, rather than the edge itself. The instance graph contains all
individuals, and the instantiations of schema properties; the labeling function λ
applies here as well for the same reasons. Finally, the two graphs are related via
the τc function, which determines the class(es) each individual is instantiated
under.

Definition 1 (RDFS KB). An RDFS KB is a tuple V = 〈GS , GI , λ, τc〉,
where:

– GS is a labelled directed graph GS = (VS , ES) such that VS , ES are the nodes
and edges of GS, respectively, and VS ⊆ C ∪ L.

– GI is a labelled directed graph GI = (VI , EI) such that VI , EI are the nodes
and edges of GI , respectively, and VI ⊆ I ∪ L.

– A labelling function λ : ES ∪EI �→ 2P determines the property URI that each
edge corresponds to (properties with multiple domains/ranges may appear in
more than one edge).

– A function τc : I �→ 2C associating each individual with the classes that it is
instantiated under.

In the following, we will write p(v1, v2) to denote an edge e in GS , where
v1, v2 ∈ VS , or GI , where v1, v2 ∈ VI , from node v1 to node v2, such that,
λ(e) = p. In addition, for brevity, we will call schema node a node s ∈ VS , class
node a node c ∈ C ∩ VS , and instance node a node i ∈ I ∩ VI . A path from a
node vs to vi, denoted by path(vs → vi), is the finite sequence of edges, which
connect a sequence of nodes, starting from vs and ending at vi. The length of a
path, denoted by dpath(vs → vi), is the number of the edges that exist in that
path. Finally, having a schema graph GS , the closure of GS , denoted by Cl(GS),
contains all triples that can be inferred from GS using inference. From now on,
when we use GS , we will mean Cl(GS) for reasons of simplicity, unless stated
otherwise. This is to ensure that the result will be the same, independent of the
number of inferences applied on an input schema graph GS .

3 Schema Summarization

Schema summarization aims to highlight the most representative concepts of a
schema, preserving important information and reducing the size and the com-
plexity of the whole schema. Central questions to summarization are (i) how to
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rank the schema nodes according to an importance measure, and (ii) how to link
the top-k ones in order to produce a valid sub-schema graph.

3.1 Identifying Important Nodes in RDFDigest+

To identify the most important nodes, RDFDigest+ employs a variety of cen-
trality measures like Degree, Bridging Centrality, Harmonic Centrality, Radial-
ity, Ego Centrality and Betweenness [17]. As [17] shows, among these measures,
Betweenness produces summaries with a better quality. In addition, in this paper
we explore for the first time to this purpose, PageRank and HITS, two additional
well-known centrality measures [5]. Specifically, the importance measures (IM)
we are going to explore for our experiments, for selecting the top-k most impor-
tant nodes are the following:

– Betweenness (BE). The number of the shortest paths from all nodes to all
others that pass through a node.

– PageRank (PR). This centrality measure assigns a score based on node’s con-
nections, and their connections. PageRank takes link direction and weight into
account so links can only pass influence in one direction, and pass different
amounts of influence.

– HITS (HT). HITS algorithm is based on the idea that in the Web, and in all
document collections which can be represented by directed networks, there
are two types of important nodes: hubs and authorities. Hubs are nodes which
point to many nodes of the type considered important. Authorities are these
important nodes.

Independently of the importance measure (IM) selected, since those measures
have been developed for generic graphs, we adapt them to be used for RDFS
graphs. To achieve that we first normalize each measure IM on a scale of 0 to 1:

normal(IM(v)) =
IM(v) − min(IM(GS))

max(IM(GS)) − min(IM(GS))
(1)

where IM(v) is the importance value of a node v in GS , and min(IM(GS)) is
the minimum and max(IM(GS)) is the maximum importance value in GS .

Similarly, we normalize the number of instances (InstV) that belong to a
schema node. As such, the adapted importance measure (AIM) of each node is
the sum of the normalized values of the importance measures and the instances.

AIM(v) = normal(IM(v)) + normal(InstV (v)) (2)

Next, let TOPAIM
k (V ) be the function that returns the top-k nodes of an

RDFS KB V , according to the selected adapted importance measure (AIM) - for
brevity we will use TOPk(V ) independently of the importance measure selected.

Overall, our system is flexible enough to enable the uninterrupted addition of
new importance measures by adding new function calls. The diverse set of impor-
tance measures offered, enable exploring RDFS KBs according to the way users
perceive importance, offering many alternatives and enhancing the exploration
abilities of our system.
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3.2 Linking Important Nodes

Having a way to rank the schema nodes of an RDFS KB according to the per-
ceived importance, we then focus on selecting the paths that link those nodes,
aiming to produce a valid sub-schema graph. As the main problem of previous
approaches [17,26] was the introduction of many additional nodes (besides the
top-k ones), in this paper, we focus on selecting the paths that introduce the
minimum number of additional nodes to the final summary graph. As such, we
model the problem of linking the most important nodes as a variation of the
well-known Graph Steiner-Tree problem (GSTP) [27]. The corresponding algo-
rithm targets at minimizing the additional nodes introduced for connecting the
top-k most important nodes [17]. However, the problem is NP-hard, and as such
approximation algorithms should be used for large datasets.

3.3 Summary Schema Graph

Having identified ways for locating important nodes and, in turn, for connecting
them, we define next the summary schema graph as follows:

Definition 2 (Summary Schema Graph of size n). Let V = 〈GS , GI , λ, τc〉
be an RDFS KB. A summary schema graph of size n for V is a connected schema
graph G′

S = (V ′
S , E′

S), G′
S ⊆ Cl(GS), with:

– V ′
S = TOPk(V ) ∪ VADD,

– ∀vi, vj ∈ TOPk(V ), ∃path(vi → vj) ∈ G′
S,

– VADD represents the nodes in the summary used only to link the nodes in
TOPk(V ),

– � summary schema graph G′′
S = (V ′′

S , E′′
S) of size n for V , such that,

|V ′′
S | < |V ′

S |.

4 Exploration Through Summaries

Getting the summaries, users can better understand the contents of a KB. How-
ever, still the user might find the presented information overwhelming and he/she
may like to see less information, focusing for example, only on the top-10 nodes
(zoom) or requesting more detailed information for a specific subgraph of the
summary (extend).

4.1 The Extend Operator

The extend operator gets as input a subgraph of the schema graph and identifies
other nodes that are depending on the selected nodes. Dependence has not only
to do with distance, but with additional parameters, including importance. Like
TF-IDF, the basic hypothesis here is that the greater the influence of a prop-
erty on identifying a corresponding instance is, the less times it is repeated, or
in other words, infrequent properties are more informative than frequent ones.



274 G. Troullinou et al.

This way, we define the dependence between two classes as a combination of their
cardinality closeness (defined in the sequel), the adapted importance measures
(AIM) of the classes and the number of edges appearing in the path connecting
these two classes. So, dependence is defined as:

Dependence(u, v) =
AIM(u) − ∑

i∈Y
AIM(i)

CC((i−1),i)

dpath(u → v)
(3)

where the cardinality closeness CC is defined for a pair of classes as the number
of distinct edges over the number of all edges between them. Formally:

Definition 3 (Cardinality Closeness). Let ck, cs be two adjacent schema
nodes and ui, uj ∈ GI such that τc(ui) = ck and τc(uj) = cs. The cardinal-
ity closeness of p(ck, cs), namely the CC(p(ck, cs)), is defined as:

CC(p(ck, cs)) =
1 + |c|

|c| +
DistinctV (p(ui, uj))
Instances(p(ui, uj))

(4)

where |c|, c ∈ C ∩ VS, is the number of nodes in the schema graph,
DistinctV (p(ui, uj)) is the number of distinct p(ui, uj) and Instances(p(ui, uj))
is the number of p(ui, uj). When there are no instances, Instances(p(ui, uj)) = 1
and DistinctV (p(ui, uj)) = 0.

As we move away from a node, the dependence becomes smaller by calcu-
lating the differences of AIM across a selected path in the graph. We penalize
additionally dependence dividing by the distance of the two nodes. The highest
the dependence of a path, the more appropriate is the first node to represent
the final node of the path. Also note that Dependence(u, v) is different than
Dependence(v, u), since the dependence of a more important node towards a
less important node is higher than the other way around, although, they share
the same cardinality closeness. To identify the dependent nodes of a selected
node, we use the function dependend(ui, range, number of nodes) that returns
at most number of nodes nodes depending on ui with a distance at most range.

The extend operator takes into account a particular subgraph of a summary
schema graph, and is defined as follows:

Definition 4 (Extend operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of an RDFS KB V = 〈GS , GI , λ, τc〉. The extend operator, i.e.,
extend(Ge), takes as input a subgraph Ge = (Ve, Ee) of G′

S, Ge ⊆ G′
S, and

returns a connected schema graph G′
e = (V ′

e , E
′
e), Ve ⊆ V ′

e , for which:

– G′
e ⊆ Cl(GS),

– V ′
e\Ve = Vd ∪ VADD′ , where Vd includes, ∀vi ∈ Ve, all nodes vj, such that,

dependend(vj , range, number of nodes) = vi, and VADD′ the nodes that link
the nodes in Vd with the other summary nodes,

– ∀vi ∈ Vd ∪ TOPk(V ), ∃path(vx → vy) ∈ G′
e,

– � G′′
e = extend(Ge) = (V ′′

e , E′′
e ), such that, |V ′′

e | < |V ′
e |.
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Algorithm 1 presents the extend algorithm. The algorithm identifies the
dependent nodes (lines 2–5) using the depencence function. Due to lack of space,
the detailed description of the algorithm used for locating the dependent nodes
is omitted, however abstractly, it starts from ui and calculate the dependence
of the adjacent nodes expanding progressively the range until it reaches the
number of nodes. Next, the algorithm tries to link the top-k nodes using the
Steiner-Tree algorithm (line 6). However, as the Steiner-Tree algorithm is NP-
complete, our problem is NP-complete as well.

Algorithm 1. Extend
InputG′

S = (V ′
S , E

′
S) the summary schema graph of GS , Ge = (Ve, Ee) the selected

summary schema subgraph
Output G′

e = (V ′
e , E

′
e) the result schema graph

1: procedure Extend
2: V ′

e = V ′
S

3: for each vi in Ve do
4: V ′

e = V ′
e ∪ dependent(vi, range, number of nodes)

5: end for
6: Calculate E′

e using the Steiner-Tree algorithm over GS with the nodes in Ve as
terminals

7: end procedure

Two optimizations that we explore in this work are the following:

CHINS. CHINS is an approximation of the Steiner-Tree algorithm [27] proved
to have a worst case bound of 2, i.e., ZT /Zopt ≤ 2 · (1 − l/|Q|), where ZT and
Zopt denote the objective function values of a feasible solution and an optimal
solution respectively, Q the set of nodes to be linked (for the extend operator the
top-k nodes and the selected dependent ones) and l a constant [3]. The algorithm
proceeds as follows:

1. Start with a partial solution consisting of a single selected node.
2. While the solution does not contain all selected nodes do find the nearest

nodes u∗ ∈ Vt and p∗ being a top-k node not in Vt.

As such, for each node to be linked, the algorithm has to visit at worst the whole
set of nodes and edges of the graph, and the corresponding complexity is O(Q ·
|V + E|). CHINS has been proved to offer an optimal trade-off between quality
of the generated summaries and execution time [17], when used for generating
summaries.

Shortest Paths. CHINS starts from a single node extending one by one the set
of selected nodes. However, having the nodes in the summary already, there is
no need to start from the first node. As such, another approximation could be
to start with the nodes already available in the summary and then proceed to
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step 2 of CHINS. The algorithm for each one of the |Q\TOPK(V )| nodes needs
at worst to visit the whole graph. This way, the worst-case complexity of the
algorithm is O(|Q\TOPK(V )| · |V + E|).
Dependent Paths. In order to calculate the dependence between the selected
nodes and the ones introduced by the dependent functions, the visited paths
can be recorded and use these, already visited paths for connecting the selected
nodes with the original summary. So, in this approximation, instead of finding
the shortest path between the existing summary and each dependent node, we
calculate the shortest path between the extended and the dependent node, which
is already calculated in the previous step (the dependent function). The complex-
ity remains the same with the previous algorithm (O(|Q\TOPK(V )| · |V + E|)),
since only the |Q\TOPK(V )| nodes are considered sequentially for linking them
to the existing summary.

4.2 The Zoom Operator

In this section, we focus on zooming operations, by exploiting the schema graph
as a whole. That is, we introduce the zoom-out and zoom-in operators to produce
more detailed or coarse summary schema graphs. To this end, we consider the
n′ schema nodes with the highest importance in GS , where n′ can be either
greater than n, for achieving a zoom-out, or smaller than n, for achieving a
zoom-in, where n represents the number of the most important nodes in a given
summary.

Definition 5 (Zoom-out operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of size n of an RDFS KB V = 〈GS , GI , λ, τc〉. The zoom-
out operator zoomout(G′

S , n′), with n′ > n, returns a connected schema graph
G′

zo = (V ′
zo, E

′
zo), for which:

– G′
zo ⊆ Cl(GS),

– V ′
zo = V ′

S ∪ TOP ∪ VADD, where TOP = TOPn′(V )\V ′
S,

– ∀vi ∈ TOP , ∃vj ∈ V ′
S, such that, ∃path(vi → vj) ∈ G′

zo,
– VADD represents the nodes in G′

zo used only to link the nodes in TOP,
– � G′′

zo = zoomout(G′
S , n′) = (V ′′

zo, E
′′
zo), such that, |V ′′

z o| < |V ′
zo|.

Definition 6 (Zoom-in operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of size n of an RDFS KB V = 〈GS , GI , λ, τc〉. The zoom-
in operator zoomin(G′

S , n′), with n′ < n, returns a connected schema graph
G′

zi = (V ′
zi, E

′
zi), for which:

– G′
zi ⊆ G′

S,
– V ′

zi = TOPn′(V ) ∪ VADD,
– VADD represents the nodes in G′

zi used only to link the nodes in TOPn′(V ),
– � G′′

zi = zoomin(G′
S , n′) = (V ′′

zi, E
′′
zi), such that, |V ′′

zi| < |V ′
zi|.
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The simplest approach for zooming-in/out, is to calculate from scratch the
TOPn′(V ) and then to use the Steiner-Tree algorithm from scratch to link the
selected nodes. However, since we already have an existing summary as a basis
for our zoom operations, we explore the following approximations.

Zoom-In. Remove the nodes in TOPn(V )\TOPn′(V ) and their connections
without recalculating the Steiner-Tree algorithm for TOPn′(V ) – this might
leave additional nodes in the resulting summary.

Zoom-Out - CHINS. Add the nodes in TOPn′(V )\TOPn(V ) and link them
with the existing summary, using the CHINS approximation algorithm.

Zoom-Out - Shortest Paths. Add the nodes in TOPn′(V )\TOPn(V ) and
link them with the existing summary, using the Shortest Paths approximation
algorithm.

5 Evaluation and Implementation

To evaluate our approach, we use the version 3.8 of DBpedia1, which is consisted
of 359 classes, 1323 properties and more that 2.3M instances, and offers an inter-
esting use-case for exploration. To identify the quality of our approach, we use a
query log containing 50K user queries provided by the DBpedia SPARQL end-
point for the corresponding DBpedia version. Our goal is to assess the percentage
of the queries that can be answered solely by using the generated schema sum-
mary along with the corresponding instances, i.e. the coverage of the queries
from a schema summary.

Having a summary, we can calculate for each query the percentage of the
classes and properties that are included in the summary. A class/property
appears within a query either directly or indirectly. Directly when the said
class/property appears within a triple pattern of the query. Indirectly for a
class is when the said class is the type of an instance or the domain/range of a
property that appear in a triple pattern of the query. Indirectly for a property
is when the said property is the type of an instance. Having the percentages of
the classes and properties included in the summary, the query coverage is the
weighted sum of these percentages. As our summaries are node-based (they are
generated based on the top-k most important nodes; in zoom we add/remove
important nodes; in extend we add the dependent nodes) the weight on the
nodes is larger than the one on the properties (for our experiments we used 0.8
for nodes and 0.2 for edges).

5.1 Quality - Evaluating the Zoom Operator

In this section, we evaluate the quality of the zoom-out operator. To do that
we start from a summary containing 10% of the initial schema graph, and we
zoom-out progressively by 10%, until we reach the 40% of the schema graph.

1 http://wiki.dbpedia.org/.

http://wiki.dbpedia.org/
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Having the coverage of each query, we can calculate the average coverage for
all queries in our log. In essence, an average coverage of 70% means that on
average the 70% of the queries in the query log can be answered only using
the summary accompanied with its corresponding instances. As when zooming-
out, the next more important nodes are added to the summary, we expect that
the average coverage of all queries should grow accordingly. The results are
shown in Fig. 2, whereas the actual improvement is shown in Fig. 3. As we can
observe, indeed as the percentage of the summary increases, more queries are
covered by the result summary. In addition, HITS and Betweenness perform
better, competing each other in all cases. Specifically, HITS presents a more
stable behavior with the best coverage from the smallest zoom-out percentage,
while Betweenness performs better from the 20% zoom-out and on. PageRank is
always worse than HITS and Betweenness. As a baseline we added the Random
bar as well, where we randomly select nodes from the schema graph (connecting
them with the corresponding measure). Even if some-times randomly adding
more nodes improves a bit the results, overall, this is the approach with the
worst performance, clearly showing the benefits of our approach. Regarding the
actual improvement, we observe that CHINS and Shortest Paths return results of
the same quality, with Shortest Paths being slightly better in some cases. In this
sense, Betweenness appears to be the most stable measure with improvements
around 35% to 45%, while PageRank shows a good improvement, around 35%,
for cases in which a 40% zoom-out is performed. Due to space limitations, we
omit the results of the zoom-in operator that presents similar behavior.

Fig. 2. Zooming-out using various centrality measures and approximation algorithms
CHINS (CH) and Shortest Paths (SP).
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Fig. 3. Improvement on zooming-out using various centrality measures and approxi-
mation algorithms CHINS (CH) and Shortest Paths (SP).

5.2 Quality - Evaluating the Extend Operator

Next, we evaluate the extend operator. To do that, we start again from a sum-
mary containing 10% of the initial schema graph, and we extend progressively
requesting to extend 10% of the available nodes in the summary, until we reach
40% of the initial summary schema graph being extended.

As now we are interested in getting information relevant to particular selected
nodes, and not for the whole schema graph, we calculate the average coverage
for the queries including only classes from the selected part to be extended. In
this case, an average coverage of 70% means that on average the 70% of the
queries in the query log, including one of the extended nodes, can be answered
only using the summary accompanied by its corresponding instances. As when
more nodes related to the extended ones, are added to the summary, we expect
that the average coverage of those queries should grow accordingly. The results
are shown in Fig. 4, whereas the actual improvement is shown in detail in Fig. 5.

Overall, we observe here that indeed the more nodes we extend, the more
“local” queries are covered. In addition, the Shortest Paths algorithm provides
the best results in all cases, followed by CHINS. This is reasonable since the
Shortest Paths algorithm targets at identifying the shortest path between the
dependent nodes and the available summary, and as such, it prioritizes nodes
closest to the ones to be extended. On the other hand, the Dependent paths
algorithm does a minimum effort trying to connect the dependent nodes to the
existing summary and this has a direct effect on the quality of the produced
summary. PageRank presents the best coverage, on average around 68% to 78%,
while HITS follows with coverage around 65% to 73%. In turn, Betweenness has
a coverage around 59% to 72%, while, as expected, Random presents the worst
behavior with coverage from 35% to 40%. Overall, even if PageRank has the
best performance, we observe that Betweenness has the best improvement.
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Fig. 4. Extend using HITS and Betweenness, and the approximation algorithms ran-
dom (RA), CHINS (CH), Shortest Paths (SP) and Dependent (DE).

Fig. 5. Improvement on extending using HITS and betweenness, and the approximation
algorithms random (RA), CHINS (CH), Shortest Paths (SP) and Dependent (DE).

5.3 The RDFDigest+ System

All aforementioned measures and algorithms are available online on the RDFDi-
gest+ system2, a novel system that enables effective and efficient RDFS KB
exploration using summaries. An instance of RDFDigest+ is shown in Fig. 6.

2 http://rdfdigest.ics.forth.gr.

http://rdfdigest.ics.forth.gr
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Fig. 6. The RDFDigest+ system.

Users can upload their own datasets, and RDFDigest+ produces a visual
summary identifying and linking the most important nodes in the KB. In the pre-
sented summary graph, the size of a node depends on its importance. By clicking
on a node, additional metadata (e.g. the number of instances, and the connected
properties and instances) are provided to enhance the ontology understanding.
Further exploration of the data source is allowed by clicking on the details (on
the left) of the selected class and properties. When clicked, its instances and
connections appear in a pop-up window. In addition, exploration of the data
source is allowed by double-clicking on a node to extend the summary on that
specific node. Besides a specific node, a whole area can be selected, requesting
more detailed information to be presented regarding the selected nodes. The
summary can be zoomed-in and zoomed-out in order to present more detailed
or more generic information regarding the whole summary. Finally, the user is
able to download the summary as a valid RDFS document.

6 Related Work

According to [20], an effective ontology exploration system should provide a
number of core functionalities, such as providing a high level overview of the
data, zooming in specific parts of the data and filtering out irrelevant parts.

Ontology Visualization Systems. Towards this direction, toolkits like Pro-
tege [16], TopBraid Composer [2] and Neon [8], include visualization plug-ins
using the node-link diagram paradigm to represent entities in an ontology and
their taxonomy to domain relationships. In addition, many plug-ins, like OwlViz
in Protege and Graph View in TopBraid, allow navigating the ontology hierarchy
by expanding and hiding nodes.

SpaceTree [18] follows the node-link paradigm as well, but is able to maxi-
mize the nodes on display by assessing the available display space. It also avoids
clutter by utilizing informative preview icons giving the user an idea of the size
and shape of the corresponding subtrees. CropCircles [28] on the other hand,
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uses geometric containment as an alternative to classing node-link displays sac-
rificing space to make it easier for users to understand the topological relations
in an ontology. Hybrid solutions, like Jambalaya [23] and Knoocks [12], combine
containment-based and node-link approaches by providing alternative integrated
views of the two paradigms, whereas other approaches, like [7], are based on the
notion of distorting the view of the presented graph to combine context and
focus. The node on focus is usually the central one and the rest of the nodes
are presented around it, reduced in size until they reach a point that they are
no longer visible. Finally, WebVOWL [14] implements the Visual Notation for
OWL Ontologies (VOWL) by providing graphical depictions for elements of the
Web Ontology Language (OWL) that are combined to a force-directed graph
layout representing the ontology.

However, all aforementioned approaches in essence, use geometric techniques
to provide the necessary abstraction, such as hyperbolic or force-directed graphs,
geometric containment or miniature sub-trees. However, we argue that an ideal
visualization approach should start with the most important elements of the
ontology allowing then progressively the users to explore other less important
areas.

Ontology Summarization Systems. Besides pure ontology visualization sys-
tems, ontology summarization systems have adopted as well zooming functional-
ities. An example is KC-Viz [15], which focuses on the key concepts of the ontol-
ogy based on psycholinguistic criteria. Our system on the other hand, allows
users to select multiple measures for identifying importance. KC-Viz provides a
set of navigation and visualization mechanisms, including flexible zooming into
and hiding of specific parts of an ontology. However, this work is limited in selec-
tively expanding the hierarchy and the connections of selected nodes, whereas
in our case besides zooming, we also visualize dependent nodes enabling further
exploration of the data source.

[13] supports zoom, filter, details-on-demand, relate, history and extract
operations using hierarchical connected circles to provide overview, indented
trees to relate different concepts and node-links for filtering and details on-
demand, enabling the users to choose the level of semantic zoom. However, the
operations performed are not formalized, the corresponding algorithms are not
presented and an evaluation is completely missing from the aforementioned work.

[10] proposes a tool that supports three visual exploration options. The first
one, named landmark view, provides an overview of the class (property) taxon-
omy giving only representative classes in the hierarchy - selected automatically
by a set of statistics measures and user preferences. Then, a user can further
explore a specific area by extending (or collapsing) branches. The local view
displays the full hierarchy of a set of classes (properties) whereas the axiom
view, provides information about a selected class and its connectivity in the
ontology. Compared to our work, this approach is limited mostly on hierarchical
structures.
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7 Conclusions

In this paper3 we present a novel platform enabling KB exploration opera-
tions over summaries. We introduce the zoom and extend operations, focusing
on the number of important nodes of the generated summary, and on getting
more detailed information for selected schema summary nodes, respectively. We
explore various approximation algorithms showing that we can calculate effi-
ciently the aforementioned operations without sacrificing the quality of the result
summary. In fact, we show that the Shortest Paths algorithm provides an optimal
trade-off between efficiency and quality.

To the best of our knowledge RDFDigest+ is currently the only system
enabling such exploration operations over summaries. As future work, we intent
to enable KB exploration at the instance level as well, going from schema sum-
maries to instance summaries, enabling zoom and extend operations both as
schema and instance level, or exploiting big data frameworks to speed the sum-
marization process [4]. Moreover, given the dynamically evolving datasets we
handle, users are often interested in the state of affairs on previous versions of
the datasets, along with their corresponding summaries. To address this need,
archiving policies [22] typically store adequate deltas between versions, which
are generally small, but this would create the overhead of generating versions
at query time. As a direct extension of our system, we will study the trade-offs
involved when focusing on archiving dynamic RDF summaries.
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