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Abstract. In domains such as humanitarian assistance and disaster
relief (HADR), events, rather than named entities, are the primary focus
of analysts and aid officials. An important problem that must be solved
to provide situational awareness to aid providers is automatic cluster-
ing of sub-events that refer to the same underlying event. An effective
solution to the problem requires judicious use of both domain-specific
and semantic information, as well as statistical methods like deep neural
embeddings. In this paper, we present an approach, AugSEER (Aug-
mented feature sets for Structured Event Entity Resolution), that com-
bines advances in deep neural embeddings both on text and graph data
with minimally supervised inputs from domain experts. AugSEER can
operate in both online and batch scenarios. On five real-world HADR
datasets, AugSEER is found, on average, to outperform the next best
baseline result by almost 15% on the cluster purity metric and by 3% on
the F1-Measure metric. In contrast, text-based approaches are found to
perform poorly, demonstrating the importance of semantic information
in devising a good solution. We also use sub-event clustering visualiza-
tions to illustrate the qualitative potential of AugSEER.
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1 Introduction

As the devastating consequences of recent disasters such as Hurricanes Irma and
Harvey illustrate, effective mobilizing of resources and personnel is an important
problem, with technology playing an increasingly important role, both in taking
preventive action (e.g., evacuations) and dealing with the disaster’s aftermath [6],
[8]. The impact of disasters, and other events with a humanitarian dimension, is
global: according to the 2016 Human Development report [7], conflicts, disasters
and natural resources constitute key global concerns, with more than 21.3 million
people (roughly the population of Australia) being affected by the refugee crisis
alone. Technology can play an important role in alleviating this suffering by
equipping HADR analysts with situational awareness [20]. Situational awareness

c© Springer Nature Switzerland AG 2018
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is a broad notion, involving analytics that can cover text, sentiments, entities
and spatio-temporal information. Examples include entity-centric search and
aggregate sentiment analyses that help pinpoint emerging hotspots [10]. In some
cases, posthoc analysis also needs to be conducted, perhaps by performing batch
analytics on newswire or social media collected over a time interval.

For a continuously deployed system to conduct even basic event-centric anal-
ysis, at global scales of space and over arbitrary periods of time, the structured
event entity resolution (SEER) problem needs to be solved. Along with named
entities, HADR ontologies (whether simple or complex), also include event enti-
ties as first-class citizens. Event entities tend to be semi-structured objects that
are sometimes extracted from documents, but (in the HADR space) can also be
entire document fragments. This is especially the case when considering hetero-
geneous corpora such as specialized newswire (e.g. an article describing a single
incident or event), social media and SMS. Events can span multiple days, week or
in some cases (such as the Syrian refugee crisis), years. For posthoc analysis (the
batch mode), users input their own heterogeneous corpus, usually collected over
a multi-year period of time, and desire semi-automatic non-overlapping event
clustering as a first step. In this sense, each data item is a ‘sub-event’, and a
collection of sub-events represent a ‘resolved’ event.

Adequately solving the SEER problem involves several challenges not
completely addressed by modern or classic text classification and clustering
approaches. First, in addition to being relatively robust to errors, a good SEER
system must handle the topical flux (more generally, called concept drift) that
an evolving event exhibits across documents, space and time, often in unprece-
dented ways. As an example, consider the case of the Haiti earthquake in 2010.
In an initial set of documents describing this disaster, the topics were primar-
ily along the lines of earthquakes and landslides. In later documents, the key
issues were humanitarian aid, politics and an unfortunate Cholera outbreak due
to waste mismanagement by rescuers. Experiments described later show that
topic modeling methods (or more recently, document embeddings) yield poor
performance by themselves as they are not able to deduce that all of these cir-
cumstances relate to the same situation, namely a localized disaster in Haiti that
has its origins in the earthquake.

The case above suggests that, barring large quantities of training data, a
multi-pronged i.e. statistical-semantic approach may be necessary to address
the SEER problem. In this paper, we present AugSEER, an approach that can
judiciously accommodate both domain expertise and recent advances in neural
representation learning to respond to users in online and batch modes. AugSEER
is continuously running and minimally supervised. It interfaces directly both
with a Neon engine that powers an interactive GUI, and with a NoSQL database
that stores a knowledge graph of both named and event entities, (translated and
original) texts, and NLP analytics such as sentiment analysis (Fig. 1). The GUI
and the overall system (called THOR1) is already undergoing user studies with

1 Text-enabled Humanitarian Operations in Real-time.
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Fig. 1. A schematic of the overall HADR situational awareness system (THOR) within
which AugSEER (the focus in this paper) is embedded.

real-world analysts, and is able to incorporate NLP outputs from independent
state-of-the-art systems.

Contributions. We introduce and model the Structured Event Entity Resolu-
tion (SEER) problem, motivated by rapid mobilization of resources in the HADR
domain. To the best of our knowledge, SEER is a difficult, socially consequen-
tial AI challenge not addressed by existing work. Second, we present AugSEER,
which uses a hybrid combination of feature sets, both manually defined and
automatically constructed using neural vector space embeddings, to address the
SEER problem in both online and batch modes. AugSEER supports the online
more like this mode by framing the SEER problem as a probabilistic binary
classification task. To support the batch setting (e.g., for posthoc analyses),
AugSEER uses a combination of classification and spectral clustering. AugSEER
is also minimally supervised, being able to achieve reasonably accurate results
using 30% (or fewer) training labels. To the best of our knowledge, this is the
first application to demonstrate empirical utility from combining feature sub-
spaces in a manner that has not been attempted in prior work on neural embed-
dings. Third, we rigorously evaluate multiple aspects of AugSEER on five HADR
datasets encompassing diverse events, using clustering and classification metrics
in tandem with visualizations.

2 Related Work

Feature embeddings have become popular in the AI and knowledge discovery
communities in recent years, with vector space embeddings developed for words,
sentences, documents, nodes in networks and graphs, particularly knowledge
graphs, along with embeddings of the entire graph itself. Many recent models
either adapt or extend the skip-gram model, used first for word2vec [13], or
in the case of knowledge graph embeddings, surveyed by [21], use hand-crafted
energy functions to optimize performance on applications such as triples ranking.
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Other similar kinds of graph embeddings have also been proposed in the broader
community (see [1] for a recent synthesis).

Our work is different from the above for several reasons. First, none of the
embedding papers cited above attempt to combine manual features with graph
and text-based feature embeddings in an effort to improve performance as well
as allow the domain expert (in an unusual domain like HADR) to exert a level
of control over the machine learning process. In general, AI research in the
HADR domain has been limited; far more attention has been paid instead to
good data management techniques [6], [8]. As [8] describe, only a handful of free
systems exist for powerful HADR analytics, and none cover the SEER problem.
Examples of specific work in HADR, but with much narrower scope than this
paper, include ‘social sensing’ of earthquakes [18], and location extraction [9],
both on Twitter data. To the best of our knowledge, no existing HADR system
has fully leveraged recent advances in neural embeddings.

Second, existing work on entity resolution and linking is typically limited to
resolving atomic entities like persons or organizations [4]. In contrast, we are
attempting to resolve an entire event, which is a complex data structure with
auxiliary information sets like words and entities. To the best of our knowl-
edge, this is the first paper that presents a minimally supervised approach for
addressing the SEER problem in a socially consequential domain like HADR.

We also note that, in contrast with graph-theoretic communities, the NLP
community majorly focuses on text-centric techniques for a similar problem,
namely event co-reference resolution [15], [11]. Events in the NLP community
tend to be strictly typed according to a shallow schema, and are extracted from
documents with corresponding information such as actors and dates. In contrast,
our techniques make no such assumptions, since they are unrealistic in HADR.
For example, a news article may discuss an event several hours or days after it
strikes, while social media could be instantaneous. Often, location information is
not available, and many document fragments that our approach takes as input
may not even be ‘events’ in the NLP sense. Most importantly, we are clustering
entire semi-structured objects, and not just sentences or triggers that are embed-
ded within a larger textual context. This makes the problem more challenging,
and as we describe later, text-only methods perform poorly in many cases.

3 Structured Event Entity Resolution (SEER)

We assume a set of situation frames, where a situation frame is intuitively defined
as the finest-grained unit of data collected in that HADR problem domain. A
situation frame may include such artifacts as SMS messages, intelligence frag-
ments or even social media. Many NLP tasks are performed at the level of
situation frames, following which the outputs (such as named entities) are used
to enrich the situation frame further. A simple, but representative illustration,
of this enrichment and the various artifacts involved, can be seen in Fig. 2. In
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particular, the situation frame is itself part of an event ontology, which captures
the core elements of the analyses2.

Given a set of situation frames, the SEER problem can be defined as inferring
(whether automatic or not) Same Event relationships between situation frames.
The Same Event relationship is currently assumed to have equivalence class (i.e.
reflexive, symmetric and transitive) semantics, although future work may relax
the transitivity assumption. Given these assumptions, each connected compo-
nent (in the knowledge sub-graph where situation frames are nodes, and edges
exist between frames if they are part of the same event) is called a resolved event
cluster. The ultimate goal of a batch SEER system is to recover such clusters
from a given dump of situation frames. In an (alternative) online setting, also
called more like this, users (typically interactively) select a single situation frame
as query, sometimes preceded by keyword search, and desire related frames that
provide more insight into the broader event described by the query.

Fig. 2. A schematic illustrating the key representational details of the event ontology
and event knowledge graph (EKG) for supporting solutions to the SEER problem.

While the online and batch modes are related, there are several challenges in
solving either one. First, raw HADR frames are not only highly heterogeneous
in terms of information content and quality, but in low-resource regions of the
world (where such technology would have maximal impact), come in a com-
putationally under-studied language like Uighyur [5]. As a first step, machine
translation (MT) algorithms have to be executed to automatically translate the
text into English [19]. The resulting translated text is noisy, because MT algo-
rithms for such languages are not as well developed as for English. Next, because

2 Although not fully described herein, the ontology is quite rich in practice, and
includes inferential elements like sentiments and offsets (for extraction provenance).
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named entities are important, both for SEER and for situational analytics, a
named entity recognition system has to be executed [3], following which, dupli-
cate named entities have to be resolved. However, highly accurate, automatic
entity resolution [4] is far from solved, despite decades of research from the AI
community.

Finally, because each disaster event tends to be unique compared to other dis-
aster events, building a representative training set, and automating the solution
completely using static machine learning modules, is also difficult. An example
illustrating how text, topics and entities are collectively important, but can also
näıvely interact to give misleading results, is in the case of the earthquake in
Turkey in 2011. Around the time the earthquake struck Turkey, the country was
also dealing with the Syrian refugee crisis. Frames describing either crisis tended
to have similar statistical, entity and word profiles. For example, aid agencies,
like the UN, or governmental entities like the Turkish army, were common to
both crises. In the next section, we describe AugSEER, which is an approach
that attempts to capture the important interactions between various situation
frame attributes that can lead to accurate Same Event inference even when
distinctions are fine-grained.

4 Approach

We note that the clustering in SEER is challenging (and different from ordinary
non-semantic clustering) precisely because of the arbitrary scales of time and
space involved, since at such scales, multiple, unrelated disasters are present in
the corpus. In the example we described earlier, the earthquake that hit Turkey
in 2011 was contemporaneous with the (still ongoing) Syrian refugee crisis. Also,
not every disaster is consequential enough to make international headlines, or
is in an English-speaking region. An important HADR problem is to gener-
ate meaningful results even in low-resource, minimally supervised environments.
Ideally, an analyst would like to obtain robust situational awareness on each
HADR-relevant event in such an environment with little technical expertise.

In order to learn good representations for addressing the HADR-specific chal-
lenges of the SEER problem, AugSEER relies heavily on an augmented feature
set that relies on recent advances in latent space embedding models (both for
text and graphs [2], [1]) as well as on a small set of similarity features that
captures the intuitions of domain experts. More details are provided below.

Manually Crafted Features. Domain experts, who have studied the HADR
problem over several years, understand that the text alone does not adequately
convey all relevant information about an event to statistical methods. Instead,
one must also rely on auxiliary information sets, such as extracted entities. Based
on initial data exploration and feature engineering, we devised ten real-valued
feature functions (Table 1), where each feature function is a similarity function
that applies to some information set of a pair (D1,D2) of situation frames.

We consider three similarity functions, namely cosine similarity on TFIDF,
cosine similarity on latent space embeddings derived using the paragraph2Vec
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Table 1. Manually crafted feature descriptions. Each feature is computed on a pair of
situation frames (D1 and D2).

Name Description

TFIDF{W,E} The respective cosine similarities based on bag-of-words and bag-of-
entities TFIDF representations of the text fields of D1 and D2

TFIDFavg The average of TFIDFW and TFIDFE

DV{W,E,avg} Same as above, except using text embedding (rather than TFIDF)
representations [2].

JAC{L,O,P} The Jaccard similarity between the {location, organization, person}
extracted entity sets of D1 and D2

JACall The Jaccard similarity between the set of all entities extracted from
D1 and D2

algorithm [2], and Jaccard similarity. We consider two information sets, namely
the set of entities extracted from each frame, and the tokens in the text. In the
case of Jaccard similarity, we do not consider the text as an information set, but
we do consider finer-grained sets like differently typed entities. Descriptions are
provided in Table 1.

Importantly, unlike the (subsequently described) node embedding and text
embedding features, the manually crafted features are computed for the texts in
each pair of situation frames. This makes the features inherently more suited to
the more like this online setting than to the clustering setting, to which their
application and scalability is not obvious.

Node Embedding Features. Entities play an important role in the HADR
domain, as many key events revolve around a specific set of persons, locations
and organizations, some of which might be latent (i.e. not explicitly mentioned in
the text). On the other hand, some entities might be wrongly extracted or typed
due to imperfections in the underlying extraction system. Features relevant to
explicitly extracted entities can be captured by the manual features. However,
those features cannot capture latent information, and are also not good at dis-
tinguishing which entities might prove to be more important to the problem at
hand. Instead, to capture the special nature of entities, we construct an undi-
rected entity-SF bipartite graph from the corpus by (1) assigning a unique node
in the situation frame (SF) layer to each frame D, and (2) assigning a unique
node in the entity layer to the pair (E, T ), where T is the type (e.g. person) of
an entity E extracted from the text of at least one situation frame. Edges in this
bipartite network are created by linking an entity node to each frame node from
which the entity was extracted.

Next, we execute a model inspired by the skip-gram based DeepWalk algo-
rithm on the constructed network to obtain an embedding for each situation
frame and each entity [17]. DeepWalk was originally designed for learning node
representations in unweighted social networks like YouTube and Flickr. In this
paper, we use its philosophy for learning entity-centric frame embeddings by
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first sampling nodes from the bipartite graph and initiating a constant number
of random walks from the node; and then treating each random walk like a list
of tokens that can be embedded using skip-gram. More details on the skip-gram
model and on DeepWalk may be found in the respective papers [13], [17]. We
denote the entity-centric node embedding of D, obtained through the procedure
described above, as DN (boldface indicating vectorization). Note that, because
of connectivity and co-occurrence information about extracted entities across
the corpus, entities that have not been explicitly extracted can also influence
DN owing to the continuous representations learned by DeepWalk in a dense
real-valued vector space.

Text Embedding Features. Finally, to capture statistical signals in the text,
we use skip-gram based document embeddings (also called Paragraph2Vec or
PV) first described in [2]. Specifically, we tokenize the machine-translated (if in
a foreign language) text of a situation frame using a standard set of delimiters,
convert all words to lower-case, and feed each list of tokens to the PV algorithm.
For a frame D, we denote the text embedding feature vector as DT . These
embeddings are also used in computing DV features in Table 1 for frame pairs.

4.1 Classification and Clustering

AugSEER supports the SEER problem both in batch and online settings. The
latter is a pairing problem, whereby a domain expert uses the system in a more
like this manner by first specifying a situation frame as input and then expecting
the system to retrieve other situation frames (possibly with other constraints
specified in the GUI, like keywords or entities, but not discussed herein) that
refer to the same underlying event. In AugSEER, we frame this as a probabilistic
binary classification problem on pairs of frames, whereby the pair should have
higher probability of a positive label if they represent two sub-events resolving
to the same underlying event.

In a supervised setting, given a labeled set of positive and negative pairs, we
construct an augmented feature vector for a pair (D1,D2) by (1) computing the
ten manual features on the pair, (2) concatenating the node embedding feature
vectors of D1 and D2, and (3) concatenating the text embedding feature vectors
of D1 and D2. The final feature vector is itself a concatenated combination of all
three feature sets. A classifier C is trained using the labeled data, and applied on
the test data. Based on these scores (i.e. the positive class probability output by
C per test item), a ranked list of relevant situation frames can be interactively
shown to the HADR domain expert using the system.

In a supervised batch setting, the user inputs a document dump into THOR
and expects clusters of situation frames, such that each cluster describes an
event. As Fig. 1 illustrates, the documents first undergo processing through var-
ious components (e.g., NLP components like entity recognition and machine
translation) that precede THOR. While clustering can generally be either super-
vised or unsupervised, it is supervised in this case because a user has specific
cluster semantics (and granularity) in mind. If this were not the case, one could
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also achieve a ‘good’ clustering by executing a topic modeling algorithm like
LDA. In early trials, this was found to yield poor results in terms of capturing
events, due to topical flux within event clusters; see, for example, the case of the
Haiti earthquake in the introduction.

Instead, AugSEER combines spectral clustering with the classification scheme
described earlier in a supervised setting [14]. Given a set D of frames, the input
to AugSEER is a |D × D| affinity matrix. We assume training sets TP and TN

respectively of positive and negative pairs, exactly like with classification. As a
first step, we train the classifier C on the training sets. For efficiency reasons,
we use either the (concatenated) node embedding or text embedding feature
representations (not both) and we do not use the manual features3. The second
step is to construct a symmetric affinity matrix A as follows. For a cell Aij in
the matrix indexed by (i, j), we use the following assignment function:

Aij =

⎧
⎪⎨

⎪⎩

1 if (Di,Dj) ∈ TP

0 if (Di,Dj) ∈ TN

C(Di,Dj) if (Di,Dj) /∈ TP ∪ TN

(1)

We assume that the classifier C outputs the probability of the statement
(Di,Dj) ∈ TP . Note that spectral clustering, like many other well-known clus-
tering algorithms like k-Means, requires the desired number of clusters as a
hyperparameter. Because AugSEER is a tunable system designed to assist users
in exploring events (not in giving final single-point outputs), we allow the user
to set this number, but also provide guidance through validation. In evaluations,
this value is set at the number of clusters in the ground-truth, both for AugSEER
and baselines.

5 Experiments

AugSEER has been in development for almost a year, and several evaluations
have been conducted. We evaluate the algorithmic potential of AugSEER on the
SEER task, both quantitatively and through qualitative visualizations.

5.1 Datasets

We evaluate AugSEER on five HADR datasets described in Table 2. Each dataset
is derived from real-world disasters, of which details were publicly published on,
and scraped from, the Relief Web Processed portal4. The datasets describe dif-
ferent HADR categories and are quite diverse in their information content. In
addition, we also consider a global dataset that combines the information in
Datasets 1–5. We use this dataset both for exploring the generalization poten-
tial of the system, as well as the loss in performance when we do not combine
3 A more technical reason is that we can visualize the representations this way using

an algorithm like t-SNE [12], as we illustrate subsequently.
4 http://reliefweb.int/.

http://reliefweb.int/
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Table 2. Dataset (and gold standard) details. pos. stands for positively labeled. Column
5 separately breaks down PER/ORG/LOC entity mentions. The average number of
frames per cluster in datasets 1–5 are 3, 11, 4, 6 and 5 resp.

ID Dominant themes Unique
frames

Unique
pos. pairs

Unique entity
mentions

Unique
words

Clusters

1 Floods 234 535 972/1,069/1,398 13,108 74

2 Earthquakes/landslides 424 11,425 1,559/1,855/1,394 18,735 38

3 Cyclones/hurricanes 101 276 372/534/440 7,479 25

4 Disease-
related/tropical

135 1,401 508/513/434 8,495 21

5 Miscellaneous 461 5,117 1,554/1,512/1,576 18,689 85

feature sets into an ensemble. Note that, to ensure a fair evaluation, the machine
translation and named entity recognition outputs are already provided by the
program for each situation frame in the datasets, in addition to the (not used)
original, non-translated text.

Negatively labeled pairs for the classification task were generated as follows.
Using each frame D in the corpus as a ‘query’, we computed a ranked list of all
other frames in the corpus using a simple bag-of-words approach on the trans-
lated text. We computed the rank of the last frame Di that describes the same
event as D. All documents between rank 1 and i not describing the same event
as D were paired with D and assigned a negative label. After computing such
pairs using all documents as queries, and removing duplicate pairs, we sampled
about 400,000 negative pairs (20x the total number of positive pairs in Datasets
1–5) as the negatively labeled evaluation corpus, shared among Datasets 1–5, as
described subsequently.

5.2 Preliminaries

We simulate the more like this use-case by using each frame in an event cluster
as a query, and by framing the problem of ‘pairing’ the query frame with relevant
sub-event frames as a binary classification task (described earlier in Sect. 4.1).

Parameter Tuning. We used the Python sklearn library implementations for
Random Forest (RF) and Logistic Regression (LogReg) classifiers, and for spec-
tral clustering. The gensim package in Python was used both for paragraph2Vec,
as well as the word2vec model that feeds into the DeepWalk node embedding.
The best hyperparameters for LogReg were found using the LogisticRegres-
sionCV class in sklearn that uses cross-validation (on the training set), and
using grid search with cross-validation for RF.

Training Protocol. Training percentages vary with the experiment as described
later, but training is always balanced. Namely, once |TD| is fixed for a given exper-
iment, we sample |TN | pairs from the large negative pairs corpus described earlier
in Sect. 5.1. The rest of the corpus is always used for testing. Because of sampling,
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all experiments are conducted over ten trials, and averages are reported. We use
the unpaired (two sample) Student t-test for computing statistical significance
of the best performance against the next best alternative.

Metrics. Like with other entity resolution scenarios, precision, recall and their
F1-Measure metrics on the positive class are used to report classification accu-
racy. For evaluating clustering, we use both the cluster purity and F1-Measure
metrics. Given a cluster where each data item (i.e. a frame) has a label (withheld
during clustering), in this case the underlying event that the frame is a part of,
we compute cluster purity by taking the ratio of the number of frames having
the majority label divided by the cluster size. F1-Measure can be computed by
using the set of all pairs of frames sharing a cluster as the set of positives, and
comparing against the known set of true positives to obtain the precision and
recall (and by extension, their F1-Measure), similar to classification. We note
that for all metrics, the higher the score, the better the performance.

5.3 Baselines

AugSEER involves a number of different interacting components both in clas-
sification and clustering settings. To illustrate that many of these components
are jointly necessary for achieving good performance, we considered a range of
competitive alternatives. We note that, because the SEER problem has not been
studied in detail in the research literature (see Sect. 2), especially in the HADR
domain, there are no direct SEER baselines available.

Classification. We consider three alternative feature-sets (or combinations) as
baselines: only the manual features (M), only the DeepWalk features on the
bipartite entity-frame network (N), and a combination of the two (MN). We
also consider the PV text embedding baseline (T) in isolation, along with other
text-only baselines like bag-of-words and topic models (using LDA), but all text-
only baselines consistently under-performed the alternatives described above by
significant margins. The full system includes all three feature sets (MNT).

Clustering. We tried several alternate clustering models, including Gaussian
mixture models and agglomerative clustering, and found the latter to work best.
We use both average (agg-avg) and complete (agg-c) linking when performing
agglomerative clustering. Results are reported separately for node embedding
and text embedding features. We also use unsupervised spectral clustering using
node embeddings in a cosine similarity affinity space (spec-N ) as a baseline, to
investigate the effects of supervision in AugSEER’s model of supervised spectral
clustering. We also explored using the latter with TFIDF representations, but
performance significantly declined, and we do not report those results herein.

5.4 Results

Four different sets of quantitative experiments, described below, were conducted
to test the online and batch potential of AugSEER.
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Experiment 1. For the very first set of experiments, we drew on standard find-
ings that focus primarily on text and textual contexts, whether using embeddings
or bag-of-words baselines. We considered both the classification and clustering
settings, and describe the latter here (results were consistent for both). First, we
built a supervised affinity matrix in the manner described in Sect. 4.1, using text
embeddings, followed by spectral clustering. Across ten trials, the F1-Measure
was only 10.73%, while cluster purity was higher at 71.6%. We also used cosine
similarity to build an unsupervised affinity matrix, and while F1 was better
for TFIDF (21.48%), the F1 for text embeddings was only 9.24%, almost 1.5%
lower than for the supervised setting. Compared to the results described later,
these results illustrate the non-viability of using text only, whether in low or high
dimensional spaces, for addressing the challenges of SEER in the HADR domain.
Alternatives like topic models, as well as alternate choices of word embeddings
(e.g., PV vs. fastText), did not yield significant differences.

Experiment 2. For the second set of experiments, we tested the performance of
AugSEER by using 30% and 15% of the positive samples in the global dataset for
(balanced) training, and the rest for testing. We used both the Logistic Regres-
sion and Random Forest classifiers (with best hyperparameters determined using
cross validation) with all the baseline feature sets mentioned earlier. The average
best5 F1-Measures over ten trials are reported in Table 3.

Table 3. F1-Measure results on the global dataset. MNT is the full feature set ensemble
implemented in AugSEER.

Classifier (Training %) MNT MN M N

LogReg (30%) 0.4982 0.4924 0.4185 0.2570

LogReg (15%) 0.5120 0.5075 0.4439 0.2847

RF (30%) 0.7725 0.7737 0.4165 0.7729

RF (15%) 0.7423 0.7296 0.4359 0.7155

To test how the performance varied by the disaster theme, we used 30%
of each dataset in Table 2 for training, and the other 70% for testing (over 10
trials). While we do not reproduce the full table herein, an absolute F1-measure
improvement, using RF, was achieved by AugSEER (MNT) in the range of 0.8–
18% for all five parts over the next best baseline (MN). We note that these
results far outperform the text-only results6 presented in Experiment 1.

Of the results in Table 3, RF (15%) and LogReg (15%) are significant at the
99% and 90% levels respectively. In other cases, there is no significant difference
between MN and MNT. This provides some indication that all three feature

5 By best, we mean that we chose the classifier threshold for all systems such that
F1-measure achieved by that system was maximized in that trial at that threshold.

6 Using average best F1 reporting and the 30% training methodology.



Structured Event Entity Resolution in Humanitarian Domains 245

Table 4. Precision/recall/F1-Measure scores testing generalization of AugSEER
(MNT and MN). All results are statistically significant at the 99% confidence level.
LogRef (MNT), which is all bold, performs uniformly worse than LogReg (MN), omit-
ted here due to space.

Training
Dataset

Test
Datasets

RF (MNT) RF (MN) LogReg (MN)

1 2+3+4+5 0.223/0.494/0.307 0.320/0.494/0.393 0.228/0.296/0.275

2 1+3+4+5 0.587/0.150/0.238 0.614/0.163/0.258 0.272/0.228/0.248

3 1+2+4+5 0.294/0.474/0.363 0.339/0.475/0.395 0.271/0.300/0.284

4 1+2+3+5 0.166/0.457/0.243 0.205/0.390/0.268 0.257/0.205/0.228

5 1+2+3+4 0.186/0.483/0.268 0.209/0.506/0.296 0.156/0.225/0.184

Table 5. Cluster purity scores using either node embeddings/text embeddings in a
cosine similarity space (agg-*) or affinity matrix (AugSEER), except spec-N (only
node embedding results reported).

ID agg-av agg-c AugSEER spec-N

1 0.611/ 0.415 0.633/ 0.402 0.671/ 0.633 0.556

2 0.718/ 0.384 0.723/ 0.410 0.920/ 0.880 0.678

3 0.644/ 0.426 0.634/ 0.416 0.792/ 0.822 0.624

4 0.748/ 0.496 0.704/ 0.578 0.963/ 0.852 0.644

5 0.639/ 0.475 0.641/ 0.456 0.755/ 0.592 0.522

sets have merit, with the effects more dramatic for Logistic Regression than for
Random Forest. Overall, the node embedding feature vectors DN are found to
be especially instrumental, illustrating the importance of entities, both latent
and explicit, for the SEER task. The good absolute performance of RF over
LogReg, even after cross-validation, provides further evidence for the importance
of robust feature combinations. Additionally, RF is able to generalize without
overfitting, when given more training data (unlike LogReg, which clearly starts
overfitting in the 30% setting, compared to the 15% setting). We tried other
classifiers like SVM, and found that they underperformed RF as well.

Experiment 3. We isolate the generalization ability of different feature sets in a
setting resembling transfer learning [16]. We used one of the datasets in Table 2
as positively labeled training data, and the others for testing. We used the same
negatively labeled dataset described in Sect. 5.1 for all experiments. Maximal
performance was found to be achieved across all settings with balanced training.
This resulted in five training/testing paradigms. We report the average (over ten
trials7) best F1-Measure achieved, along with corresponding precision and recall

7 Because of balanced training, we had to randomly sample the negative training set;
the positive set remained constant per trial.
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Fig. 3. t-SNE visualizations of all datasets using node/text embeddings (for visual
purposes, the same color is sometimes re-used to represent different events). Dimensions
have no intrinsic meaning in t-SNE [12].
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in Table 4, limiting results to only the two best performing systems, which were
always MN and MNT.

Similar to Table 3, we find that the two feature combinations perform sim-
ilarly, but the trend is reversed. The text embeddings, which weakly increased
the power of the classifier in the first experiment, have negative influence in this
experiment. This experiment offers a cautionary lesson in naively transferring
text embeddings, even in domains that seem somewhat similar (every dataset
is from an HADR domain). If the data in the training phase does not suffi-
ciently represent the test data (true in this experiment, but not the previous
experiment), text embeddings can reduce F1-Measure by as much as 5%.

Experiment 4. We evaluate AugSEER in the batch/posthoc analysis setting.
Using 30% positively labeled pairs in a (balanced training) supervised setting,
and the RF classifier, we test AugSEER’s performance against the agglomerative
clustering baselines (using both average and complete link functions) as well as
unsupervised spectral clustering (spec-N). In all cases, AugSEER outperforms
rival methods on the cluster purity metric by a considerable margin8, both when
using node and text embeddings. When using the F1-Measure metric, a similar
trend is observed, but with narrower improvements (3% average improvement,
rather than the 15% achieved using cluster purity). In the next section, we use
visualizations to emphasize that the latent space model and representation that
AugSEER employs for entities has considerable influence on performance.

Visualization Experiments. Visualization is an important function in
AugSEER as it is primarily a cognitive system designed to facilitate rapid sit-
uational awareness in both military and civilian situations. All visualizations
described in this section employ the unsupervised t-SNE algorithm [12]. In an
actual deployment, we use THOR (Fig. 1) for an interactive interface. Figure 3
shows that clusters for all datasets achieve an intuitive separation into different
events when using the entity-document node embedding representation, but not
the text embedding representation, supporting the hypothesis that entities and
semantics are fundamental in addressing SEER challenges.

6 Conclusion

This paper presented AugSEER, a statistical-semantic approach for addressing
structured event-entity resolution. AugSEER supports a combination of graph
and text embeddings, and manually devised feature sets to achieve 77% high-
est F1-Measure on a challenging classification problem, using only 30% labeled
training data. Similar results are achieved in the clustering scenario. AugSEER
has also been implemented into a broader HADR system called THOR (Fig. 1)
that is designed to ingest noisy NLP outputs and assist HADR field analysts in
real-time in low-resource environments9.
8 All results in Table 5 are statistically significant at the 99% level, except AugSEER

node embedding results on Dataset 1.
9 THOR was recently demonstrated in an academic venue also: https://www2018.

thewebconf.org/program/demos-track/.

https://www2018.thewebconf.org/program/demos-track/
https://www2018.thewebconf.org/program/demos-track/
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