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Abstract. We address the automatic extraction from publications of two key
concepts for representing research processes: the concept of research activity
and the sequence relation between successive activities. These representations
are driven by the Scholarly Ontology, specifically conceived for documenting
research processes. Unlike usual named entity recognition and relation extrac-
tion tasks, we are facing textual descriptions of activities of widely variable
length, while pairs of successive activities often span multiple sentences. We
developed and experimented with several sliding window classifiers using
Logistic Regression, SVMs, and Random Forests, as well as a two-stage
pipeline classifier. Our classifiers employ task-specific features, as well as word,
part-of-speech and dependency embeddings, engineered to exploit distinctive
traits of research publications written in English. The extracted activities and
sequences are associated with other relevant information from publication
metadata and stored as RDF triples in a knowledge base. Evaluation on datasets
from three disciplines, Digital Humanities, Bioinformatics, and Medicine, shows
very promising performance.

Keywords: Ontology population � Information extraction
Machine learning methodologies � Linked data

1 Introduction

The steep increase of scientific publications in every major discipline [1] makes it
increasingly difficult for experts to maintain an overview of their domain, increases the
risk of missing new work or reinventing solutions, and makes it harder to relate ideas
from different domains [2]. This situation could be significantly alleviated by sup-
porting queries such as: find all papers that address a given problem; how was the
problem solved; which methods are employed by whom in addressing particular tasks;
etc. Answering queries like these essentially requires access to information about
research processes. Such information could be compiled interactively, or automatically
extracted from research publications, finally offered in a structured form suitable for
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supporting semantic queries. It is to be noted that search engines widely used by
researchers, such as Google Scholar1, Scopus2 or Semantic Scholar3, mostly leverage
article metadata, while knowledge expressed in the actual text is only exploited in a
shallow manner mostly by matching query terms to documents [3].

Understanding and encoding the knowledge contained in research articles is a
complex task which poses several challenges. For instance, in order to extract the
context of the research reported in an article (who is involved, what are their interests,
affiliations, etc.), information from the metadata of the article must be extracted, ana-
lyzed and mapped onto a schema, so that activities, entities etc. extracted from the text
of the article can be placed in the right context. Furthermore, the actual text of pub-
lications needs to be processed in order for activities, entities, and more generally
concepts relevant to the documentation of research processes to be identified, extracted
and associated according to predefined relation types of the same schema.

In this paper we address the problem of automatically extracting from publications,
in the English language, two key concepts for representing research processes: the
concept of research activity and the sequence relation between successive activities.
We associate the information extracted from the texts of the articles with relevant
information previously extracted from the articles’ metadata or other digital reposito-
ries, and publish the resulting information in the form of RDF triples adhering to
Linked Data standards. We consider these to be the first steps towards populating an
ontology specifically designed for modeling research processes and practices [4], thus
generating a research process documentation knowledge base.

Research activities and sequence relations manifest themselves in texts in ways that
need to be specifically taken into account in order to achieve satisfactory extraction
performance. For example, unlike usual named entities (e.g., persons, locations),
research activities have textual descriptions of widely variable length, while pairs of
successive (in time) activities often span multiple sentences, unlike simpler relation
extraction tasks. We engineered several task-specific features exploiting the semantic
context of the ontology being populated, syntactic dependencies of words and other
syntactic structure information, which we combined with word embeddings. The latter
are dense vector representations of words that can be produced in an unsupervised
manner from unlabeled corpora and have proved instrumental in many Natural Lan-
guage Processing (NLP) tasks in the past years [5, 6]. We actually employ three kinds
of embeddings: word embeddings, part-of-speech (POS) tag embeddings, and depen-
dency embeddings, all pre-trained for the domain of research processes, following the
example of [7] where the first two kinds were combined.

We developed and compared several sliding window classifiers4, thus exploring the
activity and sequence extraction tasks along three dimensions:

(1) Processing granularity. We tested the effectiveness of classification at three levels
of granularity: token-, sentence- and chunk-based classification.

1 https://scholar.google.com/.
2 https://www.elsevier.com/solutions/scopus.
3 https://www.semanticscholar.org.
4 Our software and data will be available at: http://nemo.dcu.gr/resources/.
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(2) Feature space. The usual NLP practices were extended with the special task-
specific features we developed and we assessed their effectiveness.

(3) Machine learning (ML) method. We developed classifiers employing Logistic
Regression (LR) [8], linear Support Vector Machines (SVM) [9], and Random
Forests (RF) [10], as well as a two-stage pipeline combination.

The performance of these classifiers was evaluated with datasets from three dif-
ferent disciplines: Digital Humanities, Bioinformatics, and Medicine. We measured
Precision, Recall and F1 scores in token- and entity-based evaluations with very
promising results, indicating the potential for creating a reliable research process
knowledge base. The results also confirmed the contribution of the specially designed
features in achieving that performance. We view the methods presented in this paper as
strong baselines for extending our work to extracting other entities and relations
describing research processes (e.g. goals, methods employed, propositions, etc.), and
for experimenting with other classifiers (e.g., CRFs [11]), especially deep learning-
based ones (e.g., RNNs, CNNs [12]) when larger datasets become available.

The rest of this paper proceeds as follows: in Sect. 2 we present related work and
explain how our task is different; in Sect. 3 we describe the methodology and exper-
imental setup; in Sect. 4 we discuss the evaluation experiments and their results; and
we conclude in Sect. 5.

2 Related Work

To the best of our knowledge, the task of extracting variable-length textual descriptions
of research activities from publications, and associating them on the basis of sequential
order as inferred from the text, has not been addressed in previous work. That said,
however, information extraction (IE) from scientific papers has attracted a lot of interest
over the past years, as testified by the recent creation of a challenge on Scientific
Information Extraction (ScienceIE) [3], the ACL RD-TEC Reference Dataset for
Terminology Extraction and Classification [13], or domain-specific competitions such
as BioCreAtIve5. Recent works deal with the extraction of key-phrases denoting tasks,
scientific methods and materials from research documents [14, 15], the association of
the extracted entities with Linked Data [16–18], or the recognition of biomedical
entities such as genes [19, 20]. They use features based on surface form, POS tags, or
word embeddings and they employ classifiers such as SVMs, CRFs or neural networks,
to extract key-phrases and named entities from text, as well as binary lexical semantic
relations (synonym-of, hyponym-of).

In [21], key-phrases denoting the “Focus”, “Technique” and “Domain” of the
articles are identified on the basis of syntactic patterns matched via rules to the
dependency tree of each sentence in article abstracts. In [22], rule-based methods are
employed in understanding the dynamics preceding the creation of new topics. In [23],
sentences from abstracts in the domains of clinical trials and biomedicine are classified

5 http://biocreative.sourceforge.net/index.html.
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in categories, such as introduction, purpose, method, results and conclusion, using
various bag-of-words or bag-of-n-grams representations.

A specialized system for extracting specific elements from legal contracts [7] uses
sliding window classifiers and handcrafted features combined with word and POS tag
embeddings to extract contract elements such as title, date, signatories’ names, etc.

In [24, 25], portions of text mentioning specific papers are extracted and relations to
the corresponding citations are generated using rule based approaches or features that
deal mainly with the surface form or structural aspects of text (e.g., they examine the
existence of specific POS tags or lexical terms that indicate references, other citations,
etc. in the current or previous sentence). In [26], authors and organizations are iden-
tified in scientific papers via CRFs using features that mainly deal with token surface
form (lower/upper case, presence in gazetteers, font size, etc.) or structural text char-
acteristics (appearance in sections/paragraphs, first word in line, etc.). The extracted
entities are then interrelated by further extracting the hasAffiliation property. For that,
an SVM with Gaussian kernel is used with features related to the author affiliation
markers and the distance of extracted strings.

In other works related to action sequencing, such as [27], the authors create
abstractions of action sentences based on a predefined template and then cluster those
abstractions together based on a functional similarity measure. In [28], the authors use
deep reinforcement learning, in order to extract sequences of labeled actions from
sentences; each action is represented by arguments constructed from the verb and its
object (e.g., cook (rice)) and the sequencing relations can be selected or eliminated
based on their type (i.e., optional, exclusive or essential). In [29], the authors use a
predefined list of names to map their action descriptions and interpret them as action
sequences, or to generate navigational action descriptions using an encoder-aligner-
decoder structure. Unlike the above methods, we identify and associate actions that are
not expressed by single words or mapped to a fixed template or list of names. Instead,
in our work actions have complex textual representations of variable length and cannot
be labeled with words from a name-list. Moreover, we are not confined to deriving
sequence relations from single lexical keywords. Instead, sequence relations are
inferred from a combination of the actual textual context of activities along with
structural properties of the text (e.g., relative positions of the entities in the texts).

In all of the approaches reviewed above, IE from text is addressed using either rules
or ML methods based on features that handle mainly the surface form of words dis-
regarding other information, such as attributes derived from syntactic dependencies or
more complex syntactic patterns. ML methods of that kind perform inadequately in
extracting research activities from text, as suggested by the evaluation of our baseline
method that uses similar features. This behavior can be attributed to the following
characteristics of the task at hand:

– Research activities are entities manifesting themselves only by their textual
description and not by any specific nomenclature. Furthermore, their textual
description does not follow any specific surface form.

– The textual chunks representing research activities can be of arbitrary length. This
has been observed to exceed 50 tokens, which is significantly higher than the
lengths of entity names in common Named Entity Recognition (NER).
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– Unlike other NER tasks, the surface form of the tokens inside the textual description
of a research activity can vary so much, that it is insignificant for the purpose of
extracting activities.

– Contrary to common NER tasks, where the extracted entities cover only a small
portion of a sentence, research activities may cover almost entire sentences, and
even more than one sentence. Here we restrict our investigation to activities con-
tained in one sentence each. Multi-sentence activities are usually composed of
smaller ones. The hierarchical decomposition of those composite activities even-
tually leads to simple single-sentence ones.

– Sequence relations between activities cannot be detected solely from lexical cues in
the text. Other attributes of the activities, including their relative position in text,
actual textual description, etc., are also employed to improve classification.

The main contributions of the work reported here are:

– The way we address the complexity of the particular task by combining information
from the ontology (e.g., available relation types, constraints on their domain and
range), task-specific embeddings of words, POS tags, and syntactic dependencies,
features detecting special syntactic sequences of words and their order of appear-
ance in texts, specialized features dealing with lexico-syntactic patterns, as opposed
to just word surface form, currently employed in other works related to extracting
knowledge from scientific literature.

– The proposed methods are applicable to any scientific domain, since no domain-
specific lexica or training corpora are required, and they are demonstrated with test
sets from three disciplines, capturing a variety of writing styles.

– Our methods yield higher performance compared to common NER or rule-based
solutions, as evidenced by comparing to the baselines, which is notable especially
considering the fact that the limited sizes of the datasets we had available do not
allow for more sophisticated ML approaches (such as deep learning methods).

Furthermore, we show how –based on the semantics from an ontology, specifically
designed to represent research processes [4] - information extracted from text can be
associated with knowledge from article metadata and other sources (such as ORCID6)
as part of creating a comprehensive research process knowledge base.

3 Setup and Methodology

We use as schema for research process knowledge bases the Scholarly Ontology
(SO) [4], a domain-independent ontology of scholarly/scientific work. A specialization,
in fact precursor, of SO already applied to the domain of Digital Humanities is the
NeDiMAH Methods Ontology (NeMO) [30]. A brief overview of SO core concepts is
given in the following section. For a full account see [4].

6 https://orcid.org.
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3.1 Conceptual Framework: The Scholarly Ontology

Figure 1 shows the core concepts and relations in SO. The rationale behind the
ontology is to support documenting “who does what, when, and how” in a given
scholarly domain. The ontology is built around the central notion of activity and
combines three perspectives: the agency perspective, concerning actors and inten-
tionality; the procedure perspective, concerning the intellectual framework and orga-
nization of work; and the resource perspective, concerning the material and immaterial
objects consumed, used or produced in the course of activities.

Activity concerns real events that have occurred in the form of intentional acts
carried out by actors. The instances of the Activity class are real processes with specific
results, as opposed to those of the Method class, which are specifications, procedures,
or recipes for carrying out activities so as to address specific goals. Sequence and
composition of activities are represented by the follows and partOf relations respec-
tively. Actor instances are entities capable of performing intentional acts that they can
be accounted or referenced for. They can participate in activities, actively or passively,
in one or more roles. Subclasses of Actor are the classes Person and Group, repre-
senting individual persons and collective entities respectively. Further specializations
of Group are the classes Organization and ResearchTeam. ContentItem comprises
information resources, regardless of their physical carrier, in human readable form
(with images, tables, articles, bibliographic references, etc. being specializations of
ContentItem class). Assertion includes all kinds of assertions in the scholarly domain
and captures the intellectual essence of scholarly activity, comprising propositions
resulting from activities and can be supportedBy evidence provided by content items.
Finally, the class Topic comprises thematic keywords which function as tags
expressing the subject of methods, the topic of content items, research interests of
actors, etc.

In this paper, we focus on extracting from text and automatically populating two
key concepts of the ontology: (i) Activity, a unary predicate denoting research processes

Fig. 1. Scholarly ontology core
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such as a biological experiment, an archeological excavation, an anthropological or
medical study, etc. and (ii) follows, a binary predicate denoting the sequence relation
between two successive activities. Figure 2 shows an example of textual chunks rep-
resenting research activities -highlighted- and their sequence relations.

3.2 The Dataset

An unlabeled dataset obtained from 50,000 open-access research papers was used in
order to create embeddings. The dataset consisted of approximately 10,000,000 sen-
tences after metadata cleaning and parsing using spaCy7, yielding 300,000,000 tokens
and eventually a vocabulary of approx. 1,000,000 unique words (types). Word, part-of-
speech tag (POS) and dependency (DEP) embeddings were generated from the above.
Specifically: 100-dimensional word embeddings were produced using the Gensim
implementation of word2vec8 (skip-gram model); 25-dimensional POS embeddings
were produced by replacing each token by its corresponding POS tag before running
word2vec; and 25-dimensional DEP embeddings were produced by replacing each
token by the label of the (unique) arc linking the token to its head in the dependency
tree. Our experiments with other general-purpose, publicly available embeddings, such
as those trained on the Common Crawl corpus using GloVe9, or those trained on
Wikipedia articles with word2vec, showed inferior performance compared to our
domain-specific embeddings. This can be attributed to the fact that our embeddings are
trained exclusively on scholarly articles, thus capturing the idiosyncrasies of scholarly
writing styles.

To train and evaluate our machine learning methods, we used research articles
randomly selected using APIs from publishers such as Springer and Elsevier, or by
scraping online journals such as the Digital Humanitites Quarterly. To annotate the

Fig. 2. Activities and sequential relations

7 https://spacy.io/.
8 https://radimrehurek.com/gensim/.
9 https://nlp.stanford.edu/projects/glove/.
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dataset with ground truth, we used human annotators, appropriately trained in the use
of SO. Guidelines and examples were provided to the annotators.

The training set, comprising texts from 50 research articles covering 9 research
domains, was annotated by two post-graduate students. Three annotation trials (one
article annotated by both annotators per trial, followed by discussion) were initially
performed. Inter-annotator agreement was 81% kappa statistic, measured on 5 articles
annotated by both annotators at the end of the annotation trials. Subsequently, the
remaining articles were annotated by one annotator each. The annotation of the training
set yielded approx. 1,000 sequence relations and 1,700 activities comprising approx.
31,000 tokens. For hyper-parameter tuning we used 3-fold cross-validation.

For testing, we used articles from three disciplines, Digital Humanities (DH),
Bioinformatics (BIOINF) and Medicine (MED), to expose our classifiers, trained on a
generic set, to a wide variety of writing styles. Three test sets, 15 articles per discipline,
were annotated by two expert -per discipline- annotators. The annotators were trained
on 5 articles per discipline, annotated by both annotators, with discussion after anno-
tating each article. Inter-annotator agreement was 81%, 83% and 85% kappa for DH,
BIOINF and MED, respectively, for the fifth article of each discipline. The remaining
articles were annotated by one annotator each. For each test set, human annotation
produced approx. 600 activities containing approx. 10,000 tokens. Concerning
sequence relations, human annotation produced approx. 200 relations for DH, 500 for
BIOINF, and 600 for MED. The differences in the numbers can be attributed to the
granularity of activities and the writing style prevalent in each research field.

3.3 Extracting Research Activities

Seven sliding window classifiers (SWC) and a two-stage pipeline classifier were
implemented for extracting research activities (Table 1). They all perform token-based
classification by examining each token t and its surrounding tokens in a fixed-size
window, and classifying t as positive if it is part of a phrase expressing a research
activity, or negative otherwise. The size of the window was set at 30 tokens around t (a
total of 30 + 30 + 1 = 61 tokens) following hyper-parameter tuning. Zero-padding was
used to represent tokens exceeding the sentence boundary. Each window of tokens was
turned into a feature vector representing the token t being classified. We experimented
with Logistic Regression, linear Support Vector Machines and Random Forests, with
different feature specifications as detailed below. We use the notation M.E.F or M.E.F.
F to denote the resulting classifiers, where M denotes the learning method used, E the
embeddings and F the special features.

The first and second classifiers, LR.WP.B and SVM.WP.B, use Logistic Recres-
sion (LR) and linear SVM respectively, while they both employ 139 features: 125
derived from the 100- and 25-dimensional vectors of the word and POS embeddings
(WP), and another 14 binary hand-crafted features labeled “basic” (B) that deal with the
surface form of tokens. Of those features, 7 capture specific token surface forms (title,
capitalized, digit, punctuation mark, etc.), while the other 7 determine whether the
token’s lexical form indicates neighboring activities. For example, words that indicate
sequencing of events (‘first’, ‘afterwards’, ‘finally’, etc.), specialization (‘concretely’,
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‘specifically’, etc.), causality (‘for’, ‘to’, etc.,), etc. The total number of features in the
window is: 61 � 139 = 8,479.

The third and fourth classifiers, LR.WPD.BS and SVM.WPD.BS, differ from the
first two in that they extend the embeddings-related features with 25 originating from
DEP embeddings (WPD) and the special features with 10 binary “smart” features
(BS) related to special syntactic structures. The latter are meant to capture the inclusion
of a token in patterns suggesting activities, either directly, such as sub-sentences with
verb in past tense and subject in first person (e.g.: “we performed stylistic analysis”), or
indirectly, such as sub-sentences with causal modifiers indicating goals of neighboring
activities (e.g. “[ACT: performed stylistic analysis], in order [GOAL: to recognize each
characteristic]”). The total number of features is now 61 � (139 + 25 + 10) = 10,614.

The fifth classifier, RF.PD.BS, employs Random Forests (RF) and uses 51 one-hot
features representing POS tags and 71 one-hot features representing DEP tags (PD),
rather than embeddings. It also uses the same binary features (14 “basic” and 10
“smart”) as the third and fourth classifiers. The total number of features in the sliding
window is 61 � (14 + 10 + 57 + 71) = 9,272.

The sixth and seventh classifiers, LR.PD.S.BS and SVM.PD.S.BS, are like the
third and fourth with the difference that: (a) they omit features related to word
embeddings, and (b) they account for the syntactic sequence (S) of words, i.e., the
sequence from the syntactic dependency of the word to its head and the head of its
head, thus encoding joint information for 3 tokens instead of just one. As an example of
such a syntactic sequence, consider in the first sentence of Fig. 2, the word “conduct”,
with its syntactic head “order” and the syntactic head of its head “in”. The total number
of features in the sliding window is now 61 � (10 + 14 + 50) � 3 = 13,542.

In addition to the above classifiers we implemented a two-stage pipeline (see
Fig. 3). The first classifier, SVM.WPD.BS, is trained on all the sentences of the
training set, as before, but now performs sentence classification instead of token
classification, i.e., detects only the existence of research activities in the sentence
without identifying their boundaries. For the first classifier, each sentence is represented
using averaged word/POS/DEP embeddings of the contained tokens. This produces a
vector of 100 or 25 features derived from the 100-dimensional word embeddings or the
25-dimensional POS or DEP embeddings respectively, keeping the number of
features/dimensions independent from the actual number of tokens in the sentence. In
addition, we used 14 binary features for representing the existence or absence inside the
sentence of the -previously described- special syntactic patterns and lexical forms that
provide indirect activity identifiers. For the second classifier, we used SVM.PD.S.BS,
but now trained only on sentences containing at least one research activity. This
performs token-based classification and determines the boundaries of the chunks
describing research activities in the sentences classified as positives by the first clas-
sifier. The intuition behind the pipeline is that, by splitting the task into two simpler
sub-tasks, each separate classifier will achieve high enough accuracy for their con-
catenation to produce better results, which was proven correct in the evaluation.
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3.4 Extracting Sequence Relations

Extracting sequence relations requires examining all plausible activity pairs. For every
pair of extracted activities, the text chunk bounded by these two entities, [act1, …,
act2], is treated as expressing a candidate sequence relation. A maximum chunk length
of 500 tokens, set during hyper-parameter tuning, serves to restrict the search to a
reasonable set of candidates excluding pairs of too distant entities unlikely to be
sequential, yet including pairs of entities from neighboring paragraphs or sections with
reasonable chance of being related. A classifier then determines whether the bounding
activities of the chunk satisfy the property follows.

Each chunk is represented using averaged word/POS/DEP embeddings of the
tokens in the chunk together with 11 special features: 5 that examine certain structural
properties of the chunks (act1 and act2 are in the same sentence/adjacent
sentences/same paragraph; other entities intervene; the chunk contains conjuncts, like
the word “and”, syntactically associated with tokens inside the boundary entities); 3 for
act1 and 3 for act2 that examine the entire sentence(s) containing each one of them in
order to capture possible sequence indicators (e.g. the words “then” and “Afterwards”
in Fig. 2) referring to act1 and act2, even when they are not inside the chunk bounded
by act1 and act2 or the individual chunks representing act1 and act2 respectively.

We implemented three classifiers for extracting sequence relations between activ-
ities. The first sequence extractor, LR.WPD.B, uses Logistic Regression and 161
features per chunk: 100 features for the averaged word embeddings of the tokens in the
chunk, 25 for the averaged POS, 25 for the averaged DEP embeddings, 5 for structural
chunk properties and 6 for sequence indicators, as discussed above. The second
extractor, SVM.WPD.B, uses the same features, but with a linear SVM. The third
extractor, RF.PD.B, uses Random Forests (RF) and the per-dimension sum of the one-
hot encodings of the POS and DEP tags of each token in the chunk. We also exper-
imented with the average and the TF-IDF-weighted average of the encodings, but
without better results in either case.

3.5 Background Context Integration and URI Creation

Having extracted research activities and their sequence relations, we attach to them
contextual information obtained from the metadata of the publications. Specifically, we
have created mappings that currently support the association of article metadata from
two major publishers (Springer and Elsevier) with relevant SO classes such as par-
ticipants in the research processes (the authors of the paper), their interests (author
keywords) and their personal information (affiliations, email, etc.), the ContentItem that
they are documented in (the research articles), etc. We also provide integration through
API with ORCID, a non-for-profit organization for assigning unique, persistent IDs to

Fig. 3. Activity extraction pipeline
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researchers, so that (i) the ORCID id of each person can be used for duplicate detection
and (ii) additional information regarding related projects, funding or biography can be
retrieved through the ORCID repository.

The research process knowledge base is created by encoding the extracted infor-
mation as RDF triples adhering to Linked Data principles and the RDFS10 and NIF11

models. For entities with a proper name, such as Persons, Organizations, Articles and
Topics, their URIs are derived by combining the namespace of the knowledge base, the
entity type according to SO, and a unique id provided by the entity name (such as
ORCID id or email for persons, article id, topic name, etc.). For activities and sequence
relations, URIs are generated by combining the namespace of the knowledge base, the
entity type according to SO, the source of extraction (publication id) and the two offsets
identifying the boundaries of the extracted entity inside the text, thus ensuring that each
URI is unique. A small excerpt of the knowledge base is shown in Fig. 4. Based on our
measurements, information extracted from 50 articles translates roughly to 100,000
triples, this being highly dependent on the writing style and the discipline. Indicative
running times (on a PC with an Intel i7, 16 GB RAM) for the entire process are approx.
100 s/article.

4 Evaluation

In general, metadata association has exhibited very good performance since it relies
solely on pre-constructed mappings between fixed schemas. Few isolated incidents
(lower than 1%) of improper association were due to errors in XML/HTML tags in the
article (e.g., an empty or misplaced bracket) and can be treated with additional escape
rules as part of the general debugging process.

Regarding the information extraction from text, we evaluated the performance of all
the classifiers by measuring Precision, Recall and F1 scores. After window-size
selection and hyper-parameter tuning using 3-fold cross-validation on the training set,
all the classifiers were trained on the entire training set. As previously mentioned, we

Fig. 4. Excerpt from the produced RDF triples

10 https://www.w3.org/TR/rdf-schema/.
11 http://persistence.uni-leipzig.org/nlp2rdf/.
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used three different test sets, DH, BIOINF, and MED, presumably representing dif-
ferent writing styles, as well as their combination (ALL Test Set).

Approximate Randomization Tests (ART) [32] between every classifier and the
relevant baseline were carried out to ensure the statistical significance of the tests.
Classifiers were grouped in zones of statistically similar results (shown by dividing
lines in Tables 1 and 3) and ARTs were run on every combination of methods from
different zones in order to ensure that the difference between any two measurements is
statistically significant given our test sets. The Bonferroni correction was used to adjust
the threshold (p-value) from the default 0.05 to 0.00625 for activity extraction and
0.0125 for sequence relation extraction, since we compared more than two systems. All
pair combinations gave probabilities below the above thresholds in ARTs, therefore all
the results shown are statistically significant.

4.1 Research Activity Extraction Evaluation

The evaluation of activity extraction methods involves comparing classifier results
against a reference standard produced by human annotators on the basis of Precision,
Recall and F1 scores calculated as usual12. In addition, we compare the classifiers with
a “baseline” method, similar to those commonly used in NER tasks [7], with a smaller
sliding window of 15 tokens (7 left, the central token t, 7 right), 100 features for word
embeddings, 25 features for POS embeddings and 14 “basic” binary features for sur-
face form representation, in total 15 � (125 + 14) = 2,085 features. The baseline uses
a linear SVM trained on the same training set, as this has proved experimentally to
perform slightly better than LR and RF. Two groups of comparisons are made: token-
based and entity-based.

In token-based evaluation, a true positive (TP) is a token correctly classified as part
of a chunk representing a research activity, a false positive (FP) is a token incorrectly
classified as part of a research activity, and a false negative (FN) is a token incorrectly
classified as non-part of a research activity. Results of the token-based evaluation for
each test set are shown in Table 1. Regarding the pipeline classifier which consists of a
sentence- and a token-based classifier in tandem, detailed per stage and aggregate
performance results are shown in Table 2. The aggregate scores of the pipeline are also
shown in Table 1 for comparison with the other methods.

The Pipeline classifier achieved the highest scores on every test set and criterion.
The aggregate performance of the pipeline is inferior to that of the individual stages
(see Table 2) due to error propagation, since the sentences that are wrongly classified in
the first classifier are fed as input into the second. The baseline, on the other hand,
performed worse than all the other classifiers on every test set and criterion. This can
mainly be attributed to two factors: (a) the difference in the size of the sliding window
(as indicated from the performance increase between the baseline and the SVM.WP.B);
and (b) the use of the DEP embeddings and the “smart” features. Moreover, word
embeddings do not add much to the overall improvement of the classification, as
suggested by the performance of the RF.PD.BS, LR.PD.S.BS and SVM.PD.S.BS

12 P ¼ TP
TPþFP ;R ¼ TP

TPþFN ;F1 ¼ 2�P�R
PþR .

Ontology Driven Extraction of Research Processes 173



classifiers, as word embeddings can be replaced by other contextual information
regarding the syntactic sequence of tokens. Therefore, the distinctive features of the
methods we developed prove to contribute significantly to the performance of research
activity extraction.

In entity-based evaluation, each maximal sequence of consecutive positive tokens
is considered as a research activity (“entity”). Ideally, an entity is correctly predicted by
a classifier only if it matches 100% with one annotated by humans, counting as errors
even the slightest deviations. In practice, a close match suffices, especially in cases
where the extracted entities are very long. A threshold of 86% was automatically
selected by averaging the Levenshtein distances of a sample of 100 pairs of overlap-
ping strings (a predicted and a gold entity in each pair) for which the annotators
indicated that the overlap was sufficient. This translated roughly into a difference of 1-5
tokens (including punctuation marks) at the boundaries of each entity. Consequently, in
entity-based evaluation a true positive (TP) is a predicted string that matches a refer-
ence standard string by at least 86%; a false positive (FP) is an un-matched predicted
string; and a false negative (FN) is an un-matched reference standard string. Results of
the entity-based evaluation are shown in Table 3.

The RF.PD.BS and Pipeline classifiers compete for best performance in the case of
entity-based evaluation with similar results on most test sets. The baseline again per-
forms worse than all other methods. Performance results in entity-based evaluation are

Table 1. Token-based evaluation

DH test set BIOINF test set MED test set ALL test set
P R F1 P R F1 P R F1 P R F1

Baseline 0.54 0.30 0.38 0.76 0.50 0.60 0.76 0.62 0.69 0.72 0.50 0.59
1 LR.WP.B 0.62 0.44 0.52 0.79 0.59 0.68 0.79 0.66 0.72 0.75 0.58 0.65
2 SVM.WP.B 0.60 0.50 0.54 0.80 0.66 0.72 0.78 0.68 0.73 0.74 0.63 0.68
3 LR.WPD.BS 0.78 0.76 0.77 0.83 0.81 0.82 0.88 0.83 0.85 0.84 0.80 0.82
4 SVM.WPD.BS 0.76 0.80 0.78 0.83 0.83 0.83 0.87 0.85 0.86 0.83 0.83 0.83
5 RF.PD.BS 0.79 0.80 0.80 0.85 0.83 0.84 0.89 0.83 0.86 0.85 0.82 0.83
6 LR.PD.S.BS 0.77 0.79 0.78 0.82 0.83 0.83 0.88 0.88 0.88 0.83 0.84 0.84
7 SVM.PD.S.BS 0.79 0.82 0.80 0.84 0.84 0.84 0.89 0.89 0.89 0.85 0.85 0.85
8 SVM-Pipeline 0.83 0.82 0.82 0.87 0.89 0.88 0.90 0.93 0.92 0.87 0.89 0.88

Table 2. Pipeline evaluation

DH test set BIOINF test set MED test set ALL test set

Entity identification: P R F1 P R F1 P R F1 P R F1
SVM.WPD.BS 0.90 0.89 0.89 0.96 0.94 0.95 0.96 0.96 0.96 0.94 0.93 0.94
Boundary detection:
SVM.PD.S.BS 0.92 0.89 0.90 0.92 0.95 0.94 0.95 0.96 0.95 0.93 0.94 0.93
Pipeline:
SVM-Pipeline 0.83 0.82 0.82 0.87 0.89 0.88 0.90 0.93 0.92 0.87 0.89 0.88
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inferior to those in token-based evaluation. Error analysis showed that this can be
attributed to tokens occurring in entity chunks incorrectly classified as not being
research activities; this causes the split of the original entity into smaller ones, in turn
producing additional errors (1 FN for the undetected original entity and 1 FP for each
smaller entity). Consider, for instance, the second sentence in Fig. 2. Had the classifier
produced 0 for the token “to” inside the sentence, the activity “compared the P, R and
F1 scores from the previous experiment to those from the SVM evaluation” would have
been split into two smaller entities: “compared the P, R and F1 scores from the previous
experiment” and “those from the SVM evaluation”. Since each of the new smaller
entities matches the original by less than 86%, the resulting misclassification would
give 2 FPs for the smaller activities and 1 FN for the original.

The performance decrease in entity evaluation was found to vary among domains.
Indeed, a 6.9% average decrease in F1 scores was observed with the DH test set, while
the decrease was 14.5% with the BIOINF test set, and 15.9% with MED. Error analysis
indicates that this can be attributed mainly to the differences in writing style. For
example, in the DH test set, the research activity entities were found to have smaller
size and contain fewer “error prone” tokens (such as acronyms or formulas) that could
cause individual token misclassification and thus split of the entity chunk.

4.2 Sequence Relation Extraction Evaluation

The evaluation of sequence relation extraction methods involves comparing the pre-
dicted relations among the reference standard entities in each test set with those pro-
duced by the human annotators on the basis of Precision, Recall and F1 scores calculated
as usual. A true positive (TP) is a chunk [act1,…, act2] for which the classifier correctly
predicted the follows (act2, act1) property; a false positive (FP) is a chunk for which
follows (act2, act1) was incorrectly predicted; and a false negative (FN) is a chunk for
which follows (act2, act1) incorrectly failed to be predicted. Classifier performance is
also compared with that of a simple baseline method that assigns a sequence relation to
all adjacent activities in a paragraph and activities connected by sequence cue words
(e.g., “then”, “subsequently”). Results are shown in Table 4.

Table 3. Entity-based evaluation

DH test set BIOINF test set MED test set ALL test set
P R F1 P R F1 P R F1 P R F1

Baseline 0.16 0.30 0.20 0.23 0.60 0.34 0.28 0.76 0.40 0.23 0.60 0.33
1 LR.WP.B 0.48 0.60 0.53 0.56 0.72 0.63 0.52 0.74 0.62 0.53 0.70 0.60
2 SVM.WP.B 0.42 0.64 0.50 0.54 0.76 0.63 0.51 0.78 0.62 0.50 0.74 0.60
3 LR.WPD.BS 0.58 0.80 0.67 0.57 0.80 0.66 0.58 0.82 0.68 0.58 0.80 0.67
4 SVM.WPD.BS 0.54 0.82 0.65 0.55 0.79 0.65 0.57 0.83 0.67 0.55 0.81 0.66
5 LR.PD.S.BS 0.59 0.82 0.69 0.58 0.78 0.66 0.60 0.84 0.70 0.59 0.81 0.68
6 SVM.PD.S.BS 0.61 0.83 0.70 0.62 0.76 0.68 0.61 0.83 0.70 0.61 0.80 0.70
7 RF.PD.BS 0.68 0.79 0.73 0.66 0.78 0.72 0.66 0.83 0.74 0.67 0.80 0.73
8 SVM-Pipeline 0.64 0.83 0.73 0.62 0.84 0.72 0.60 0.86 0.71 0.62 0.85 0.72
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In sequence relation extraction, RF.PD.B performed best in BIOINF, MED and
overall (F1: 0.86, 0.92 and 0.89 respectively), while for the DH test set the forerunner
was LR.WPD.B (F1: 0.88). Error analysis suggests that misclassifications are mostly
due to adjacent sentences containing multiple activities, a situation more frequent in
DH and BIOINF. For example, consider the excerpt: “[act1: Two-thirds of the
extracted bootstrap samples were used for constructing the model] and then [act2: the
other one-third were used for testing]. To calculate variable importance, we first [act3:
put down the out-of-bag cases] and [act4: counted the number of votes cast for the
correct class], and then [act5: randomly permuted the values of variable root j in the
out-of-bag cases]”. One classifier associated act3 and act4 of the second sentence with
the last activity of the first sentence (act2), and another associated the first entity of the
second sentence (act3) with each entity in the first (act1, act2). These predicted
associations are treated as wrong because, by definition, follows only holds for im-
mediately successive activities, with no others in between. Classifiers also tended to fail
to detect activity sequences in texts where activities were sparse (e.g., no adjacent
paragraphs with at least one activity each), probably because of the large size of text
between activities and the structure (not adjacent paragraphs).

5 Conclusion

We addressed the automatic extraction from the text of publications of two core ele-
ments of research processes, research activities and their sequence relations, as a basic
step towards populating research process knowledge bases complying to an ontology
for research process documentation, the Scholarly Ontology (SO). We showed that the
complexity of the task demands more complex feature engineering than usual NER
tasks. We implemented and tested several sliding window classifiers employing fea-
tures specifically designed to deal with particular lexical, syntactic, structural and
semantic aspects of textual context. Alternative implementations were compared using
linear SVMs, Logistic Regression, and Random Forests, as well as a two-stage pipeline
classifier specifically configured for the task of activity extraction.

The classifiers were evaluated against a reference standard produced by human
annotators, with three different test sets from three domains (Digital Humanities,
Bioinformatics and Medicine) and very promising results: overall F1 score 0.88 for
research activity extraction in token-based evaluation and 0.73 in entity-based evalu-
ation, and 0.89 for sequence relation extraction. The classifiers were also compared

Table 4. Relation extraction evaluation

DH test set BIOINF test set MED test set ALL test set

P R F1 P R F1 P R F1 P R F1

Baseline 0.62 0.72 0.67 0.65 0.89 0.76 0.59 0.92 0.72 0.62 0.88 0.72
1 LR(WPD)E-AVG-B 0.87 0.90 0.88 0.85 0.58 0.69 0.94 0.69 0.80 0.87 0.77 0.82
2 SVM(WPD)E-AVG-B 0.80 0.93 0.86 0.83 0.65 0.73 0.91 0.75 0.82 0.84 0.80 0.84
3 RF(PD)1H-SUM-B 0.81 0.93 0.87 0.87 0.85 0.86 0.94 0.90 0.92 0.88 0.89 0.89
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with simpler baselines which were configured without the special features of this work
and with smaller sliding window size closer to those used in common NER tasks. The
baseline classifiers were consistently inferior in both activity and sequence relation
extraction, an additional evidence in support of the effectiveness of the special features
and window width we employed. We also showed how contextual information from
article metadata and other sources such as ORCID can be associated with the extracted
entities according to the Scholarly Ontology and stored as RDF triples adhering to
Linked Data standards.

Future work includes extracting further concepts for documenting research pro-
cesses according to the Scholarly Ontology, such as goals, research questions,
propositions, methods, etc., along with their corresponding relations (such as partOf,
employs, hasObjective, etc.) and experimenting with more complex classifiers (e.g.
CNNs or RNNs [12]) when additional larger training datasets become available.
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