
Querying Large Knowledge Graphs over
Triple Pattern Fragments: An Empirical

Study

Lars Heling(B), Maribel Acosta, Maria Maleshkova, and York Sure-Vetter

Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{lars.heling,maribel.acosta,maria.maleshkova,york.sure-vetter}@kit.edu

Abstract. Triple Pattern Fragments (TPFs) are a novel interface for
accessing data in knowledge graphs on the web. So far, work on per-
formance evaluation and optimization has focused mainly on SPARQL
query execution over TPF servers. However, in order to devise query-
ing techniques that efficiently access large knowledge graphs via TPFs,
we need to identify and understand the variables that influence the
performance of TPF servers on a fine-grained level. In this work, we
assess the performance of TPFs by measuring the response time for
different requests and analyze how the requests’ properties, as well as
the TPF server configuration, may impact the performance. For this
purpose, we developed the Triple Pattern Fragment Profiler to deter-
mine the performance of TPF server. The resource is openly avail-
able at https://doi.org/10.5281/zenodo.1211621. To this end, we con-
duct an empirical study over four large knowledge graphs in differ-
ent server environments and configurations. As part of our analysis,
we provide an extensive evaluation of the results and focus on the
impact of the variables: triple pattern type, answer cardinality, page size,
backend and the environment type on the response time. The results
suggest that all variables impact on the measured response time and
allow for deriving suggestions for TPF server configurations and query
optimization.

1 Introduction

Accompanied by the proliferation of knowledge graphs on the web as Linked
Data [11], storage, and management solutions are constantly being newly devel-
oped or improved in order to support the necessity for accessing knowledge
graphs online. A variety of interfaces to access and query RDF knowledge graphs
have been proposed, including SPARQL endpoints and Triple Pattern Frag-
ments (TPFs) [14]. Conceptually, the main difference among these interfaces
is the expressivity of the requests they are able to handle: endpoints support
the execution of SPARQL queries while TPFs are able to evaluate triple pat-
terns. Furthermore, TPFs allow for querying RDF knowledge graphs which may
be stored in different sources or backends. The evaluation of a triple pattern

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11137, pp. 86–102, 2018.
https://doi.org/10.1007/978-3-030-00668-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00668-6_6&domain=pdf
https://doi.org/10.5281/zenodo.1211621

Querying Large Knowledge Graphs over Triple Pattern Fragments 87

against a TPF server produces a sequence of RDF triples that match the given
triple pattern; this is called a fragment. In addition, fragments may be parti-
tioned into several fragment pages which contain a fixed maximum number of
triples defined as the page size. The page size is configured by the data provider.
To retrieve an entire fragment, clients must iterate (or paginate) over the TPF
pages.

In order to devise efficient querying techniques over knowledge graphs on the
web, it is necessary to understand the factors that impact the performance of the
different interfaces, in particular, their response time. The factors that impact
the response time of SPARQL endpoints have been extensively studied [2,6,8,
10]. Therefore, in this work, we tackle the problem of identifying the variables
that impact on the response time of TPFs when querying large RDF knowledge
graphs. Our work aims to contribute to a better understanding of the costs
related to retrieving data by querying RDF knowledge graphs over TPFs. An
array of variables impacting the performance of TPFs have been the subject of
previous studies [4,5,13,14], however these evaluations mostly focus on a higher
level of query evaluation. Therefore, we provide a fine-grained study on the
performance of TPFs and analyze further variables potentially impacting the
performance. Concretely, we focus on the following research questions:

RQ1 How does the type of triple pattern impact the response time?
RQ2 What are the effects of the answer cardinality of triple patterns on
response time?
RQ3 What is the impact of using different page sizes on performance?
RQ4 How does the response time differ when comparing different backends?
RQ5 What are the effects on response time when TPFs serve as an interface
to several knowledge graphs simultaneously?
RQ6 What differences in performance can be observed between querying
TPFs in controlled and real-world environments?

We investigate these research questions by first devising a profiler that gen-
erates triple patterns from sampling knowledge graphs over TPFs. Our profiler
then executes the generated triple patterns and records the performance of the
TPF servers. The outcome of the profiler allows for a fine-grained analysis of
the factors that may impact on TPF performance. Subsequently, we conduct an
empirical study which evaluates the costs of querying four well-known knowledge
graphs over TPFs. In summary, we make the following contributions:

– A methodology for generating triple patterns from sampling knowledge graphs
over TPFs;

– A fine-grained and extensive evaluation to analyze the impact of several inde-
pendent variables on the performance of TPFs;

– Finally, we support the reproducibility of our results by providing the raw
data as well as the Triple Pattern Fragment Profiler1.

1 https://github.com/Lars-H/tpf profiler.

https://github.com/Lars-H/tpf_profiler

88 L. Heling et al.

The herein presented evaluation setup was specially designed in order to ensure
reuse and open access for the community, as well as reproducibility of the exper-
imental results. The used settings can be replicated, in order to enable the veri-
fication of our analysis but also to provide the basis for further experiments and
further work by other researchers in the field. The results of our study poten-
tially allow for deriving a relationship between the properties of a requested
triple pattern and the corresponding response time. In a subsequent step, the
information derived from our analysis may be applied for constructing an empir-
ical cost estimation model to be used in (federated) query engines and help to
improve the configuration when setting up TPF servers.

The remainder of this paper is structured as follows. Section 2 presents related
work and in Sect. 3 we present our methodology including the sample generation
and the TPF profiler. The setup of our study is detailed in Sect. 4. The results
of our empirical study are presented and discussed in Sect. 5. Finally, in Sect. 6
we provide our conclusions and an outlook to future work.

2 Related Work

Montoya et al. [8] identified the independent and dependent (or observed) vari-
ables that impact on the performance of querying federations of SPARQL end-
points. Following a similar classification, the independent variables that may
impact on the performance of TPFs can be grouped into four dimensions: Query,
Knowledge Graph (KG), Triple Pattern Fragment Configuration, and Platform.
Table 1 summarizes the independent variables studied in the literature and in
our work. In this work, we focus on analyzing the dependent variable response
time, i. e., the elapsed time between the client contacting the server and the first
response arriving. In the following, we position our work with respect to exper-
imental studies that have analyzed the impact of independent variables on the
response time (or cost) of querying KGs via SPARQL endpoints or TPF servers.

Query. This dimension includes variables with regard to the structure of the
query. Most of the works have studied the impact of the query shape with differ-
ent types of joins (e. g., subject-subject, subject-object, etc.) on the performance
of endpoints [2,8] and TPFs [1,13,14], as well as the effect of specifying SPARQL
query operators with different complexity [2,6,8] on the response time of end-
points. Nonetheless, little attention has been paid to studying the impact of
individual triple patterns and their instantiations [2,14] or answer size [1] on
server performance. In this work, we conduct a fine-grained study of indepen-
dent variables in the query dimension at the level of triple patterns to better
understand the behavior of TPFs when evaluating different types of requests.

Knowledge Graph (KG). The variables in this dimension characterize the
KG or the data, including the number of statements in the KG, the distribution
of nodes and relationships, and partitioning or replication of the data. Analogous
to other studies [2,6,8], in our work we study the response time of servers when
querying real-world KGs with different sizes and data distributions.

Querying Large Knowledge Graphs over Triple Pattern Fragments 89

Table 1. Comparison of empirical studies that analyze the impact of independent
variables on the response time of SPARQL endpoints or TPFs.

Independent variables Endpoints Triple Pattern Fragments

[8] [6] [2] [10] [13] [1] [14] [4] [5] Our Work

Query

Query shape ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Query complexity ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Triple pattern type ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Number of constants ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Answer cardinality ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Knowledge Graph (KG)

KG size ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Data frequency distribution ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓

KG partitioning/replication ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Triple Pattern Fragment Configuration

Backend type – – – – ✗ ✗ ✗ ✗ ✗ ✓

Page size – – – – ✗ ✗ ✗ ✗ ✗ ✓

Pagination – – – – ✗ ✗ ✗ ✗ ✗ ✓

Relation KGs/TPF instance – – – – ✗ ✗ ✗ ✗ ✗ ✓

Platform

Server workload ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Network delays ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Caching ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Data serialization ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hardware configuration ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Triple Pattern Fragment Configuration. This dimension focuses on the
variables that are particular to the TPFs. Based on the current definition and
implementations of TPFs [13,14] we identify four variables in this dimension:
backend type, page size, pagination, relation KGs/TPF instance. Current imple-
mentations of TPF servers support different backends including HDT files [3],
SPARQL endpoints, and RDF documents.2 Another important feature of TPFs
is that they partition the result of evaluating a triple pattern into fragment
pages; each page contains a fixed maximum number of triples. In this work, we
will focus on studying the behavior of TPF servers with configurations, suit-
able for querying large knowledge graph. Another variable in this dimension is
pagination, i. e., the cost of iterating the fragment pages to completely evalu-
ate a triple pattern. Lastly, the KGs/TPF variable captures the correspondence
of the KGs accessed via an instance of a TPF server. From all the independent

2 https://github.com/LinkedDataFragments/Server.js.

https://github.com/LinkedDataFragments/Server.js

90 L. Heling et al.

variables listed in the TPF configuration dimension, only the work by Hartig and
Buil-Aranda [5] investigated the impact of varying the page size on cache hits
but not on response time. In contrast, our work studies the variables pagination
and the relation KGs/TPF by studying the cost of dereferencing different pages
of a given fragment and quantifying the cost of querying TPFs when KGs are
accessed individually or simultaneously through a TPF instance, respectively.

Platform. The platform dimension as defined by Montoya et al. [8] comprises
the variables that describe the computing infrastructure. In this dimension, the
most studied variables are: server workload [2,4,5,13,14], network delays [1,2,8],
and caching [2,4,5]. In our work, we study the impact of server workload and
network delays when performing requests in two different environments: a con-
trolled environment with one client and no network delays (best-case scenario),
and a real-world environment when querying public TPF servers.

3 Our Approach

We devise an approach to measure the response time of Triple Pattern Frag-
ment (TPF) servers under different conditions. Our approach is independent of
the underlying knowledge graph (KG) and TPF server configuration and can be
applied to conduct empirical studies on any KG accessible via TPF servers. The
main components of our approach are the Triple Pattern Sampling Com-
ponent and the Evaluation Component. In the following, we describe the
sampling component and then present how the samples are used to capture the
performance of TPFs.

The goal of the proposed Triple Pattern Sampling Component is generating
random triple patterns with different characteristics to evaluate the performance
of TPF servers under different conditions. The input of the sampling method is
a KG G composed of a set of RDF triples accessible via a TPF server, and a
sample size m. The output of this method is a sample S, with S corresponding
to a set of triple patterns such that the evaluation of a triple pattern tp ∈ S
over G produces answers, i.e., [[tp]]G �= ∅. The core idea of our sampling method
is to select a set of RDF triples in a given KG and derive triple patterns by
replacing constants (RDF terms) with existential variables. Assuming R the
set of RDF terms – IRIs, literals, and blank nodes – and V the universe of
variables [9], the triple patterns in the generated sample are of the following 23

types: {〈r1, r2, r3〉, 〈v1, v2, v3〉, 〈v1, v2, r3〉, 〈v1, r2, v3〉, 〈r1, v2, v3〉, 〈r1, v2, r3〉,
〈r1, r2, v3〉, 〈v1, r2, r3〉} with r1, r2, r3 ∈ R and v1, v2, v3 ∈ V .

For a given KG G accessible via a TPF server, the sampling component
produces a set of RDF triples G∗ ⊆ G, such that |G∗| = m. In order to build
G∗, the proposed component performs random sampling over the KG such that
G∗ contains RDF triples that capture different characteristics of G in terms of
data distributions. Furthermore, the sampling component exploits the features
of TPFs to construct G∗ from G. For instance, when evaluating a triple pattern

Querying Large Knowledge Graphs over Triple Pattern Fragments 91

tp against G over a TPF server, the server provides the set3 Gtp of RDF triples
that match tp as well as metadata that includes an approximation to the total
number of answers of tp. Furthermore, TPFs partition Gtp into subsets called
pages [14]. Let P be the set of pages of Gtp, each page Pi ∈ P contains a fixed
maximum number of triples, i.e., |Pi| ≤ pmax. To retrieve the complete answer
Gtp of triple pattern tp, it is necessary to iterate over all the pages in P, where

|P| =
⌈ |Gtp|
pmax

⌉
. To generate G∗, the sampling method proceeds as follows:

1. The sampling component evaluates the triple pattern tp with variables in
subject, predicate and object position (i. e. tp = 〈v1, v2, v3〉) against the KG
G via a TPF server. The result of this evaluation is a set of pages P with
RDF triples Gtp that match tp.

2. From the set of pages P, the sampling method randomly selects m pages
following a random uniform distribution, i.e., all the pages in P have the
same probability of being selected.

3. For each page Pi ∈ P, the sampling method randomly selects an RDF triple
〈s, p, o〉 ∈ Pi following a random uniform distribution and adds it to G∗.

4. From the RDF triples in G∗ the triple pattern sample S is generated by
replacing the RDF terms with variables: S =

⋃
〈s,p,o〉∈G∗{v1, s} × {v2, p} ×

{v3, o}, with v1, v2, v3 ∈ V .

It is important to note that during the sampling of RDF triples, two different
RDF triples may lead to the generation of the same triple pattern. For instance,
consider the RDF triples 〈s1, p, o1〉 and 〈s2, p, o2〉 with s1, s2, p, o1, o2 ∈ R, s1 �=
s2, and o1 �= o2. In this case, both triples produce the common triple pattern
〈v1, p, v3〉 with v1, v3 ∈ V . Nonetheless, according to step 4 of the sampling
method, 〈v1, p, v3〉 occurs once in S. The reason for restricting S to unique triple
patterns is to avoid unwanted caching effects when measuring the performance of
TPF servers, which may happen when requesting the same triple pattern several
times sequentially. As every triple pattern tp with |[[tp]]G| ∈ [1, |G|], ∀tp ∈ S
is unique in the sample, it follows that m ≤ |S| ≤ 23m. This means that the
input parameter m of the triple pattern sampling component corresponds to a
lower bound on the size of S. Furthermore, we also want to examine the response
time for triple patterns which produce no results for the KG (i. e., [[tp]]G = ∅).
Thus, we extend the sampling component to add m randomly generated patterns
to the sample S with [[tp]]G = ∅. Patterns that produce empty result sets are
generated by randomly selecting triple patterns from the sample and randomly
replacing constants with URIs not contained in the KG.

The aforementioned sampling method is implemented in our Triple Pattern
Fragment Profiler (see Footnote 1) to conduct the empirical studies. The inte-
gration of the sampling methodology in the TPF Profiler to examine the per-
formance of TPF servers is shown in Fig. 1. The required input is the sample
size m as well as the URL of the TPF server to access the KG G. Based on this

3 Although the formal definition specifies that Gtp is a sequence of RDF triples [14],
for the sake of simplicity, we define Gtp as a set of RDF triples.

92 L. Heling et al.

input, the triple pattern sample set S is generated. Thereafter, in the Evalua-
tion Component, each triple pattern in the sample is requested sequentially at
the TPF server and the response time for each request is recorded. A detailed
presentation of the implementation and the setup of the experimental studies is
given in the following section.

Fig. 1. Overview of the Triple Pattern Fragment Profiler. The numbers indicate the
execution sequence.

4 Experimental Settings

We provide a detailed description of the settings used to assess the performance
of TPF server in different conditions using the presented approach. This includes
environment and implementation, backend and page size, the selection of the
knowledge graphs, sample size determination, and reported metrics. To ensure
repeatability of our study, the TPF Profiler, as well as the HDT files contain-
ing the KGs, are available at https://doi.org/10.5281/zenodo.1211621 under the
BSD 3-Clause license. In addition, we provide the raw data and the analysis tools
to ensure reproducibility of our experimental results (see Footnote 9) under CC
BY 4.0.

Environment and Implementation. We conducted our study in two types of
environments: a real-world environment by accessing autonomous TPF servers,
and a controlled environment using a dedicated server. As a result, we compare
the querying costs in two environments which differ in networking conditions,
server workload, and possibly hardware capabilities. In the real-world environ-
ment, we accessed the TPF servers available at the official portal of Linked
Data Fragments4. For the controlled environment, we deployed the TPF server
v2.2.3 [12] on a Debian GNU/Linux 8.6 64-bit machine with CPU AMD Opteron
6204 3.3 GHz (4 physical cores) and 32 GB RAM. The TPF profiler is imple-
mented in Python 2.7.9 and executed on the same server instance to avoid
network latencies accessing the TPF server in the controlled environment.

Backend and Page Size. We consider different backends as well as page sizes
for each backend to provide a detailed insight into how the configuration of the
4 http://linkeddatafragments.org.

https://doi.org/10.5281/zenodo.1211621
http://linkeddatafragments.org

Querying Large Knowledge Graphs over Triple Pattern Fragments 93

TPF server impact on its performance. To our knowledge, the backend used in
the publicly available servers is HDT files and thus is the only backend type
in the real-world environment. In the controlled environment, both HDT files
as well as SPARQL endpoints are used as backends since they are both suit-
able for querying large KGs. The SPARQL endpoints are set up using Virtuoso
Open Source Edition Version 7.2.45. Since the settings of the real-world server
may not be changed, the page size pmax is set to 100 answers per page. In
the controlled environment, four different page size settings are investigated:
pmax = {100, 500, 1000, 10000}. The configuration files for both the TPF server
and the Virtuoso SPARQL endpoint are provided in our repository (see Foot-
note 1).

Table 2. Characterization of the knowledge graphs studied in the evaluation. The
namespace ldf corresponds to http://data.linkeddatafragments.org/.

Knowledge graph # Triples # Subjects # Predicates # Objects Server IRI

DBLP 88,150,324 5,125,936 27 36,413,780 ldf:dblp

DBpedia 377,367,913 30,458,591 57,465 145,396,686 ldf:dbpedia2014

GeoNames 123,020,821 8,345,450 26 42,728,317 ldf:geonames

Wiktionary 64,358,375 10,163,240 27 21,554,657 ldf:wiktionary

Knowledge Graphs (KGs). Having both a controlled and a real-world envi-
ronment requires KGs which are both publicly accessible via TPF servers and
are available for download to be hosted locally in the controlled environment.
Therefore, we selected four well-known KGs available at the official portal of
Linked Data Fragments (see Footnote 4) from different knowledge domains: pub-
lications (DBLP), geography (GeoNames), linguistics (Wiktionary), and cross-
domain (DBpedia). The selected KGs differ in their size (i. e., the number of RDF
triples) as well as the number of distinct subjects, predicates and objects (cf.
Table 2). As the basis for the controlled environment, we use the identical HDT
files as in the real-world environment to ensure comparability. The N-Triples files
for Virtuoso are generated from these HDT files using the hdt2rdf tool6 and
the characterization in Table 2 is derived from the HDT files using the hdtInfo
tool (see Footnote 6).

Generated Samples. For our study, we generated samples of triple patterns
to be executed over the selected KGs following the sampling method described
in Sect. 3. A key aspect of the evaluation settings for sampling is determining an
appropriate sample size, i.e., the parameter m. In the following, we describe how
we determined m empirically such that m fulfills the conditions: (i) m is large
enough to cover a variety of data to represent the general characteristics of the
KG, and (ii) m is small enough to efficiently assess the performance of the servers
in a feasible fashion. A basic approach to set m is a sample size relative to the size
5 https://virtuoso.openlinksw.com.
6 https://github.com/rdfhdt/hdt-cpp.

http://data.linkeddatafragments.org/
https://virtuoso.openlinksw.com
https://github.com/rdfhdt/hdt-cpp

94 L. Heling et al.

(a) Sample sizes (b) Sample cardinalities

Fig. 2. Sample properties. On the left, the overall response times with respect to
the sample size m are shown. On the right, the distribution of the answer cardinalities
for a sample of size m = 1000 is shown.

of the KG (e. g., 1% of all triples). However, the major drawback of this approach
is that for large datasets, a large number of requests needs to be performed on
the TPF to acquire the sample. For instance, a sample size with 1% of DBpedia
with ∼400M RDF triples would require approximately 4M requests. Firstly, this
is not feasible with respect to the overall run time of the study and, secondly, a
larger sample size does not necessarily entail a more representative sample.7 To
verify this, we measured the performance of TPFs in a controlled environment
(HDT backend) when varying the sample size m = {100, 1000, 2000, 5000} on the
studied KGs. The results reported in Fig. 2a reveal that there is no substantial
difference in the response times while increasing m (for m ≥ 1000) in all KGs.
Furthermore, we inspected the answer cardinality distribution produced by the
triple patterns in the sample obtained with 1000 RDF triples. Figure 2b indicates
that the sample generated for each studied KG contains triple patterns with a
wide range of answer cardinalities. Therefore, in this study, we set m = 1000.

Metrics. The metric to assess the cost of querying TPF server is the response
time. In this work, response time t is defined as the elapsed between sending
a request and the arrival of its response. Therefore, the time for retrieving the
first fragment page of a requested triple pattern is measured. To measure t in
our implementation, we use the Python library requests8 v2.18.4. in which the
elapsed time between the request and the response merely considers the time
until the parsing of the headers is completed and therefore, is not affected by
the size of the response’s content. We report the measurements of response time
in microseconds (μs).

We conducted an extensive experimental study to answer the research ques-
tions stated in Sect. 1. At the core of the study is the identification of the indepen-
dent variables and their effect on TPF performance. Table 3 summarizes the five

7 Since the likelihood of samples having RDF terms in common increases for larger
samples resulting in the same triple pattern derived from the sample.

8 http://docs.python-requests.org/en/master.

http://docs.python-requests.org/en/master

Querying Large Knowledge Graphs over Triple Pattern Fragments 95

Table 3. Overview of the independent variables analyzed per knowledge graph in the
evaluation of the experimental study. R and V correspond to RDF terms and variables,
respectively. G denotes a knowledge graph and tp a triple pattern.

Independent variable # Levels Levels

Environment 2 {controlled, real-world}
Backend 2 {HDT, Virtuoso}
Page size 4 pmax = {100, 500, 1000, 10000}
Triple pattern type 23 (R ∪ V) × (R ∪ V) × (R ∪ V)

Knowledge graph 4 {DBLP, DBpedia, Geonames, Wiktionary}
Answer cardinality |G| |[[tp]]G| ∈ [0, |G|]

variables analyzed and their levels with respect to their impact on the response
time in the experimental evaluation. The results of our experiments investigating
the different levels of these variables yield ≈590000 measurements.

5 Empirical Results

In this section, we present and analyze the results of our experimental stud-
ies. Essential to the evaluation of the experimental studies are the methods for
analyzing the results. The goal of the analysis is determining the impact of the
independent variables on the dependent variable, i. e., the response time. For this
purpose, we propose the use of several statistical methods. The method selec-
tion primarily depends on the type of the independent variable and dependent
variable. For the analysis in our study, the dependent variable response time is
continuous. The independent variable, however, is discrete for the answer car-
dinality and page number and categorical for all others. Therefore, we apply
a correlation analysis for the answer cardinality and paginating. For all other
independent variables, we report on the significance of the difference between
the categories. In our case, the observed variable response time is not normally
distributed9 and thus, we use the non-parametric Kruskal-Wallis test [7] to test
our hypothesis. For the sake of brevity, we provide a rather graphical evalu-
ation in this paper. Nevertheless, the complete statistical analysis as well all
visualizations of the following evaluation are provided online (see Footnote 9).

Triple Pattern Type. First, we address the research question, whether the
triple pattern type has an impact on the response time. In this evaluation, we
merely consider the page size pmax = 100 to allow for the comparability with the
real-world environment. In Fig. 3 the results are visualized as a boxplot separated
by triple pattern type including empty for triple patterns with an empty answer
set. The results are listed for the different KGs in both the controlled (with
HDT and Virtuoso backend) and real-world environment. Additionally, the mean

9 https://doi.org/10.5281/zenodo.1211621.

https://doi.org/10.5281/zenodo.1211621

96 L. Heling et al.

Fig. 3. Boxplot of the response time for the different pattern types.

number of answers per pattern type is listed in Table 4 for the different KGs.
The results reveal a difference in response time for the different pattern types.
Conducting a Kruskal-Wallis test, we find that the difference between the groups
(i. e. pattern types) is statistically significant at a level α = 0.05 in both the
controlled and real-world environment. In more detail, the response times for
some pattern types differ more prominently from the other pattern types. For
instance, the triple pattern type 〈v, r, v〉 shows the highest (median) response
times for all KGs in all environments. Note that 〈v, r, v〉 denotes the triple pattern
composed of variable, constant, variable (in that order), but the variables are not
necessarily the same. Furthermore, the 〈v, v, v〉 pattern type yields the second
highest response time in the controlled environment (for both HDT and Virtuoso
backend), except for DBpedia in which case the 〈r, v, v〉 yields a higher response
time for the Virtuoso backend. Intriguingly, this is not true in the real-world
environment, in which the 〈v, v, v〉 pattern type has one of the lowest response
times. This might be due to the fact, that the results for the pattern are cached
in the real-world environment as it is requested more frequently. Comparing the
backends in the controlled environment, it can be observed that the pattern types
have a similar impact on the response. However, the average response time with
the Virtuoso backend (21.7 ms) is more than twice as high than for the HDT
backend (10.2 ms).

Querying Large Knowledge Graphs over Triple Pattern Fragments 97

Moreover, compared to the other KGs, the response times for GeoNames are
notably higher for the pattern types 〈v, r, r〉 and 〈v, v, r〉. Taking the mean num-
ber of answers for these pattern types into consideration, we observe that these
pattern types also yield the most answers on average. The previous observation
may lead to the assumption that merely the higher answer cardinalities are the
reason for higher response times.

Table 4. Mean answer cardinality of the triple patterns in the sample listed for the
different triple pattern types and the different KGs.

〈r, r, r〉 〈r, r, v〉 〈r, v, r〉 〈r, v, v〉 〈v, r, r〉 〈v, r, v〉 〈v, v, r〉 〈v, v, v〉
DBLP 1.00E+00 2.37E+00 1.19E+01 2.23E+01 3.92E+03 4.18E+06 3.94E+03 8.82E+07

DBpedia 1.00E+00 4.85E+00 2.82E+01 5.55E+01 2.09E+03 9.58E+05 3.50E+03 3.77E+08

GeoNames 1.00E+00 1.06E+00 8.11E+00 1.50E+01 3.36E+04 5.13E+06 3.58E+04 1.23E+08

Wiktionary 1.00E+00 5.83E+00 6.95E+00 1.32E+01 4.57E+04 3.50E+06 1.18E+05 6.44E+07

Answer Cardinality. The response times with respect to the answer cardinality
are shown in Fig. 4. The results reveal a similar trend for both the controlled
and the real-world environment. There is an increase in the response time up to
≈100 answers and thereafter the response times appear to be rather steady. As
the page size in this visualization is pmax = 100 answers per page, the results
suggest that the difference may be related to the page size. To quantify this
relation, we report on the correlation coefficient ρ, which allows for measuring
the strength and direction of the linear correlation between two variables. Table 5
lists the correlation coefficients for answer cardinality and response time for
samples when: (i) the answers fit in one fragment page (ρ≤pmax

), (ii) pagination
is required to dereference the fragment (ρ>pmax

), and (iii) the overall correlation
coefficient (ρ). The correlation is reported for the different backends and page
sizes in the controlled environment as well as the correlation for the HDT backend
and page size pmax = 100 in the real-world environment.

In Table 5, a weak positive correlation (ρ ∈ [0.5, 0.75]) is highlighted with a
light color and a stronger positive correlation (ρ ∈ [0.75, 1]) with a dark color.
The results for Virtuoso reveal more often and stronger positive correlations
between the answer cardinality and the response time. This indicates that HDT
is more efficient in querying the patterns regardless of the answer cardinality.
This is also visible in Fig. 4, where there are more outliers with respects to the
overall trend for HDT backend in the controlled environment. In contrast, the
Virtuoso backend appears to have an increasing lower bound of the response time
for higher answer cardinalities. Moreover, it can be observed that the page size
also influences the correlation in the controlled environment since the correlation
is only present for page size pmax > 100. In the real-world environment, no
correlation can be observed as most correlation indices are close to zero. This
suggests that exogenous factors, e.g. network delays and server load, affect the
response time, such that the differences induced by the answer cardinality vanish.

Page Size. We measure the performance of TPFs for different page size settings.
We report on throughput, i.e., the number of answers produced per time unit.

98 L. Heling et al.

Fig. 4. Response time in the controlled environment and real-world environment with
respect to the number of answers for all samples and each KG for all samples except
the 〈v, v, v〉 pattern type. The black line indicates 100 results (page size).

Table 5. Correlation of answer cardinality and response time in the controlled and
real-world environment for varying page size and backend. Correlation coefficient for
samples whose answers fit in one fragment page (ρ≤pmax), when pagination is required
to dereference the fragment (ρ>pmax), and the overall correlation (ρ).

We compute the throughput per fragment page (denoted Θ) when evaluating
each triple pattern tp ∈ S over a KG G as follows:

Θ(tp) :=
min{|[[tp]]G|, pmax}

t(tp)
[answers/μs], (1)

Querying Large Knowledge Graphs over Triple Pattern Fragments 99

where |[[tp]]G| is the answer cardinality, pmax the page size and t(tp) the response
time. Figure 5 shows the mean Θ for all KGs, different backends and page size
in the controlled environment. The relative changes in throughput are listed in
Table 6. For the HDT backend, the results reveal an increase in throughput for
bigger page sizes in most cases. The biggest increase is achieved by setting the
TPF page size from 100 to 500 answers per page, in all KGs. When increasing
the page size further from 1000 to 10000, the throughput even slightly decreases.
Similar results are observable for the Virtuoso backend. In contrast to HDT,
however, the throughput is not affected as strongly: it merely improves half as
much when increasing the page size from 100 to 500 answers per page. Thus, the
improvement is less significant than it is for the HDT backend.

Fig. 5. Mean TPF throughput (Θ) for all KGs, different backends and page sizes.

Table 6. Relative changes in throughput Θ for increasing the TPF page size.

DBLP DBpedia GeoNames Wiktionary

HDT Virtuoso HDT Virtuoso HDT Virtuoso HDT Virtuoso

From 100 to 500 0.677 0.329 0.636 0.380 0.751 0.376 0.710 0.345

From 500 to 1000 0.174 0.052 0.274 0.031 0.175 −0.047 0.124 0.029

From 1000 to 10000 −0.072 0.033 −0.013 −0.119 −0.011 0.115 −0.085 0.083

Paginating. As the preceding evaluation shows, the page size has an impact
on the throughput of TPFs. Moreover, the magnitude of the impact varies for
the backend types. The throughput merely considers retrieving at most the first
pmax answers. However, for |[[tp]]G| > pmax paginating is required to obtain all
answers. To examine how the response time varies when paginating, we derefer-
ence the first 10000 pages for the 〈v, v, v〉 pattern. The results are presented in
Fig. 6. It can be observed that for the HDT backend, paginating yields a rather
constant response time, while a steady increase can be observed for the Virtu-
oso backend. These observations are supported by the correlation coefficient ρ,
which clearly indicates a strong positive correlation between page number and
response time for the Virtuoso backend with ρ = 0.920 and no correlation for
the HDT backend with ρ = −0.036. The two previous evaluations suggest that

100 L. Heling et al.

the page size configuration for TPF server needs to consider the backend. For
instance, for the Virtuoso backend increasing the page size might be suitable as
it increases throughput and paginating is increasingly costly. As the response
time for paginating is rather constant for the HDT backend, bigger page sizes
may allow for exploiting the increased throughput and further reduce the neces-
sity of paginating. However, the adjustments need to take the answer cardinality
distribution of the KG into consideration as well.

Fig. 6. TPF response time for paginating the first 10000 pages for the triple pattern
〈v, v, v〉 for both HDT and Virtuoso backend in the controlled environment.

KG/TPF Instance Relation. Finally, we examine the results when making
all KGs simultaneously available in the TPF server for each backend. The mean
response time for all KGs (Multiple KG) and one KG (Single KG) available
at a time are presented in Fig. 7. The results show an increase in the TPF
response time when making multiple KGs simultaneously available regardless of
the backend. Intriguingly, the increase is higher for the smaller KGs and lower
for larger KGs for the HDT backend and the opposite holds for the Virtuoso
backend. These observations may be due to the index created by the TPF server
when making several KGs available simultaneously.

Fig. 7. Relation KGs/TPF instance. Mean response time for both backends with all
KGs available and single KGs available at a time.

6 Conclusions and Future Work

We have proposed an approach to assess the cost of querying knowledge graphs
(KGs) over Triple Pattern Fragments (TPFs). The presented TPF Profiler
includes a sampling component able to generate triple patterns from KGs and
an evaluation component to capture the response time for the sampled triple
patterns. The results allow for conducting fine-grained analyses identifying fac-
tors that impact on server performance. We conducted an empirical study using

Querying Large Knowledge Graphs over Triple Pattern Fragments 101

the proposed approach to evaluate the TPF servers in controlled and real-world
environments using diverse well-known KGs and different TPF configurations.
Thereafter, we conducted a fine-grained analysis studying the impact of triple
pattern type, answer cardinality, backend, page size, environment type, and KGs
per TPF server on the response time. To conclude our findings, we answer the
research questions stated in Sect. 1.

Answer to RQ1. Our empirical study confirms that the type of triple pattern has
a significant impact on the response time of TPF servers regardless of the backend.

Answer to RQ2. Empirical results reveal different behaviors of TPFs depending
on the answer cardinality of the triple patterns. For triple patterns that produce
answers fitting in one page, answer cardinality is rather positively correlated with
response time.

Answer to RQ3. The results of the experimental studies indicate an improved
throughput for increasing page sizes. However, the throughput decreases for large
page sizes again and the relative improvement is higher for the HDT backend.

Answer to RQ4. Our experimental study reveals significant differences in the
response times between different backend types. Overall, the HDT backend outper-
forms the Virtuoso backend and allows for querying triple patterns more efficiently.

Answer to RQ5. Empirical results suggest that in real-world environments the
impact of the analyzed variables on response time is reduced as exogenous fac-
tors increasingly affect the response times of TPF servers. In addition, querying
autonomous real-world servers can be orders of magnitude more costly.

Answer to RQ6. Our experimental study reveals that accessing multiple KGs
through a single TPF server negatively impacts on server performance.

At first sight, the absolute measured impact (in seconds) of some factors on the
response time might not appear very high. However, the results in our study
report on the response time for retrieving the first page of a fragment. Thus,
the response times for paginating to retrieve all answers of a request needs to
be considered as well. Moreover, the evaluation of SPARQL queries over TPFs
typically requires submitting a large number of requests to the TPF server, thus,
leveraging the observations may improve the overall query execution time.

Our future work will focus on integrating more variables into our analysis,
studying different variable levels (e. g., different SPARQL endpoint implementa-
tions) and gathering additional data for KGs with different characteristics.

Acknowledgments. The authors thank Ruben Verborgh for providing feedback and
the KG dumps and Javier Fernández for the fruitful discussions about HDT. This work
was carried out with the support of the German Research Foundation (DFG) within
the project “Sozial-Raumwissenschaftliche Forschungsdateninfrastruktur (SoRa)”.

102 L. Heling et al.

References

1. Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query
processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9366, pp. 111–127. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25007-6 7

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41338-4 18

3. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutierrez, C.: Compact representation of
large RDF data sets for publishing and exchange. In: Patel-Schneider, P.F., et al.
(eds.) ISWC 2010. LNCS, vol. 6496, pp. 193–208. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17746-0 13

4. Folz, P., Skaf-Molli, H., Molli, P.: CyCLaDEs: a decentralized cache for triple
pattern fragments. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 455–469. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34129-3 28

5. Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In:
Debruyne, C. (ed.) OTM 2016. LNCS, vol. 10033, pp. 762–779. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48472-3 48

6. Kjernsmo, K., Tyssedal, J.S.: Introducing statistical design of experiments to
SPARQL endpoint evaluation. In: Alani, H., et al. (eds.) ISWC 2013. LNCS,
vol. 8219, pp. 360–375. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41338-4 23

7. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J.
Am. Stat. Assoc. 47(260), 583–621 (1952)

8. Montoya, G., Vidal, M.-E., Corcho, O., Ruckhaus, E., Buil-Aranda, C.: Bench-
marking federated SPARQL query engines: are existing testbeds enough? In:
Cudré-Mauroux, P. (ed.) ISWC 2012. LNCS, vol. 7650, pp. 313–324. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0 21

9. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006). https://doi.org/10.1007/11926078 3

10. Rakhmawati, N.A., Karnstedt, M., Hausenblas, M., Decker, S.: On metrics for
measuring fragmentation of federation over SPARQL endpoints. In: WEBIST, pp.
119–126 (2014)

11. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P. (ed.) ISWC 2014. LNCS, vol.
8796, pp. 245–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 16

12. Verborgh, R.: Linkeddatafragments/server.js: v2.2.2, May 2017. https://doi.org/
10.5281/zenodo.570148

13. Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika,
P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 180–196. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11964-9 12

14. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. Web Semant. Sci. Serv. Agents World Wide Web 37, 184–206 (2016)

https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-17746-0_13
https://doi.org/10.1007/978-3-319-34129-3_28
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-642-41338-4_23
https://doi.org/10.1007/978-3-642-41338-4_23
https://doi.org/10.1007/978-3-642-35173-0_21
https://doi.org/10.1007/11926078_3
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.5281/zenodo.570148
https://doi.org/10.5281/zenodo.570148
https://doi.org/10.1007/978-3-319-11964-9_12

	Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empirical Study
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Experimental Settings
	5 Empirical Results
	6 Conclusions and Future Work
	References

