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Abstract. People are nowadays well aware that adopting healthy
lifestyles, i.e., a combination of correct diet and adequate physical activ-
ity, may significantly contribute to the prevention of chronic diseases.
We present the use of Semantic Web technologies to build a system for
supporting and motivating people in following healthy lifestyles. Seman-
tic technologies are used for modeling all relevant information, and for
fostering reasoning activities by combining real-time user-generated data
and domain expert knowledge. The proposed solution is validated in a
realistic scenario and lessons learned from this experience are reported.

1 Introduction

In the last decades, health care systems in many countries have invested substan-
tial effort in informing people about the benefits of adopting healthy behaviors
in their lives, including the prevention of several medical problems such as cogni-
tive decline, obesity, disability, and death from major chronic diseases [1]. Given
the increasing popularity of mobile and personalized applications and devices
(e.g., smart watches), a natural follow up of this effort is the development of
platforms capable of providing user tailored advices, motivating people to adopt
healthy behaviors. Although Internet-based and mobile technologies allow to
collect data from personal devices, off-the-shelf wearable sensors, and external
sources, exploiting these data to generate effective personalized recommenda-
tions and to engage people in developing and maintaining healthier patterns of
living, is a challenging task. To carry out this task, a system providing personal-
ized healthy lifestyle support has to take into account and reason on a consider-
able amount of knowledge from different domains (e.g. user attitudes, preferences
and environmental conditions, etc.), in order to generate effective personalized
recommendations, and to adapt the message in response to the environment and
the user status. Examples of such knowledge include food content and nutrients,
physical activities accompanied by information concerning their categorization
and effort, user attitudes and preferences, linguistic knowledge, and smart envi-
ronment information (places, weather, etc.) Moreover, the creation, update and
maintenance of the knowledge bases of the system by domain experts must be
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D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11137, pp. 307–324, 2018.
https://doi.org/10.1007/978-3-030-00668-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00668-6_19&domain=pdf


308 M. Dragoni et al.

facilitated in order to obtain a flexible system that can be deployed in differ-
ent domains, for different target users, and able to evolve in response to the
continuous progress of the domain knowledge.

In this paper, we present the knowledge-based solution implemented into
the PerKApp platform, a system providing personalized healthy lifestyle rec-
ommendations and advices. This work, follows the preliminary description of
PerKApp [2], where the abstract architecture of the overall platform has been
presented. Here, we put emphasis on presenting (i) the key knowledge compo-
nent, responsible for generating healthy lifestyle advices and recommendations,
(ii) the collaborative environment used by domain experts and knowledge engi-
neers to model the knowledge exploited by the system, and (iii) the observation
about how the overall platform, and in particular the knowledge part, behaves
in a real-world environment. Then, we notably stress the role of the rule-based
reasoner that is responsible of analyzing the compliance between data provided
by users and prescription rules modeled by experts, and of providing feedback
when the compliance is violated.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of available platforms for the monitoring of people’s lifestyles and
on the use of rule-based reasoners in real-world scenario. In Sect. 3 we discuss
the challenges we want to address. While, in Sect. 4 we present the scenario
where the PerKApp platform was used: namely the Key to Health project. Then,
Sect. 5 presents in more detail the knowledge component. In Sect. 6 we exemplify
PerKApp in a concrete scenario, while an evaluation of reasoning performances
is reported in Sect. 7 together with the lessons learned from this experience.
Finally, Sect. 8 concludes.

2 Related Work

The promotion of healthy lifestyle is a recent topic and the availability of systems
working in this direction is limited. Nevertheless, some approaches based on
Semantic Web technologies have been previously proposed.

In [3,4], intelligent systems recommending exercises tailored to the user pro-
file are presented. Both exploit an ontology for representing information about
the patient profile, goals and health data, and about the exercises and their
effects. Inference rules are then combined with ontological data for providing
health advices, i.e., for suggesting exercises to perform.

A further proposal is the Medical Decision Support System discussed in [5].
The presented solution allows (i) the collection of patients’ relevant information
via a mobile application prompting questions related to the patient’s medical
background, and (ii) the creation of customized advices based on the information
previously collected and on the changes of patient’s lifestyle. The system exploits
a number of ontologies, including: (i) the Patient Profile Ontology describing
general information, medical information, and medical measurements; (ii) the
Questionnaire Ontology, formalizing concepts representing generic components
of a questionnaire, sub-questionnaires, questions, potential answers, etc.; (iii) the
Lifestyle Ontology; and, (iv) the Guidelines Ontology.
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Finally, [6] presented an approach for designing a semantic reasoning engine
for supporting coaching profiles. This system uses a web-based interface for col-
lecting user data and an ontology for analyzing and processing such data. This
way, created profiles can be used to optimize the coaching activities of profes-
sionals.

More in general, reasoning-based systems have been already adopted in the
health-care domain [7–9].

With respect to the works presented in the literature, we provide a fully-
fledged Semantic Web based solution supporting (i) the modeling and storing
of all the data required to provide personalized healthy lifestyle support, as well
as (ii) the definition and execution, via a reasoning engine, of a dynamic sets
of rules performing real-time monitoring of people lifestyles. The output of the
reasoning task is then used for suggesting people to change their habits in order
to follow healthier behaviors. Our proposal fits in the context of ontology-centric
decision support systems [10], as all the data processed (e.g., user profile, meals)
and produced (e.g., violations) by the system are stored in an ontology-based
knowledge base. To the best of our knowledge, our contribution is innovative with
respect to the state of the art due the capability of integrating a multiple actor
modeling environment with the possibility of performing a rule-based reasoning
activities, at a very alimentary fine-grained level, for monitoring people behaviors
in the healthcare context.

3 Personalized Healthy Lifestyle Support

Systems for personalized healthy lifestyle recommendations and advices fall in
the broad area of decision support. The goal of these systems is to help and guide
users in taking healthy-informed decisions about their lifestyle, on aspects such
as food consumption or everyday physical activities. Such systems have to take a
decision (e.g., suggesting some physical exercises or conscious food consumption),
similarly as a human expert would do, based on available data (e.g., nutrients
ingested in the last meals, user health conditions), and to communicate these
decisions to the users according to their preferred means and modalities.

Developing a healthy lifestyle personal assistant requires addressing several
challenges from the knowledge perspective:

C1: to capture and model how experts work (“expert’s knowledge”) in assessing
adherence to healthy lifestyle recommendations: among others, this involves
representing different/heterogeneous kinds of data (e.g., food, nutrients,
physical activities, user pathologies or needs) and how they interplay in
defining a healthy lifestyle (e.g., the best practices an expert would recom-
mend);

C2: to develop effective and efficient techniques implementing expert’s knowl-
edge: these techniques apply expert’s knowledge on real-time users’ data,
to assess how healthy is a user’s lifestyle and identify violations of healthy
lifestyle recommendations;
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C3: to embed these techniques in an efficient/scalable/flexible decision support
system: the system has to acquire, process, apply expert’s knowledge to
provide motivational messages, on the data of a (possibly large) community
of monitored users;

C4: to provide facilities supporting experts in specifying and revising the pre-
scriptions for a healthy lifestyle applied by the systems: as healthy lifestyle
best practices are not immutable, and sometimes not even universally
shared, but they continuously evolve (e.g., new prescriptions for new typolo-
gies of users), there is a need to facilitate experts in defining and revising
the prescription used in the systems.

In the next sections, we show how the use of semantic technologies is par-
ticularly suited to address these challenges, and can foster further research and
development in the area of personalized health lifestyle support.

4 The PerKApp Platform

The PerKApp platform,1 schematically summarized in Fig. 1, is a personalized
healthy lifestyle recommendations and advices system implementing the 3-layer
architecture described in Sect. 3.

The Input/Output layer consists in a mobile application2 supporting the
acquisition of user information about consumed foods and physical activities.
Concerning foods, users are able to select them from a list of almost 6,000 basic
foods and dishes; while for physical activities, we connected the PerKApp plat-
form with the APIs of the most popular services and wearable devices (Google
Fit, Misfit, Polar, and Garmin), or users can specify what they did among the
more than 800 activities available. The Persuasive Layer consists in the develop-
ment of a natural language generation component integrating a set of persuasive
strategies supporting users in behavioral change. The analysis of the challenges
linked with these layers (i.e. the effort necessary for providing data rather than
the methodology for communicating with users effectively) and how they have
been addressed is out of the scope of this paper.
Semantic Technologies in PerKApp. Ontologies and rules are used to
address Challenge C1. Ontologies enables to represent in a connected and com-
prehensive way all the content relevant for the given domain. More precisely, the
HeLiS ontology [11], comprises different interconnected modules formally repre-
senting expert’s knowledge and the data needed by experts to assess the adher-
ence of a user to healthy lifestyle best practices. The choice of adopting an onto-
logical representation enables both to easily reuse existing resources, and to make
available to other initiatives the results of the modeling performed in PerKApp.

1 http://perkapp.fbk.eu/.
2 The application is available at https://play.google.com/store/apps/details?id=eu.

fbk.trec.lifestyle. The current version is only in Italian. We are in the process of
translating it in English and German.

http://perkapp.fbk.eu/
https://play.google.com/store/apps/details?id=eu.fbk.trec.lifestyle
https://play.google.com/store/apps/details?id=eu.fbk.trec.lifestyle
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For instance, for the food domain PerKApp integrates content from the Open-
FoodFacts database, which provides information about foods through an RDF
dump or an API service. At the same time, as readily reusable resources about
physical activities are currently lacking, their ontological modeling in PerKApp
can be reused in other initiatives needing structured information about them.

Semantic rules are used to capture the checks performed by healthy life-style
experts, to detect user’s violations of healthy lifestyle best practices, and to
decide whether some recommendation or motivational message has to be notified
to the user (the rules do not decide on the way or terminology to be used in the
message, a task addressed in the Persuasion Layer). The collection, modeling,
and revision of such rules (Challenge C4) by domain experts is supported by the
integration of specific user facilities and informal templates into MoKi [12], a
collaborative tool that has already been used for supporting the work of domain
experts in the health domain [13].

The application and evaluation of these rules on real-time user data (Chal-
lenge C2) is performed by an inference engine module, powered by RDFpro [14],
a tool enabling several RDF and Named Graph manipulation tasks, including
rule-based reasoning. In particular, RDFpro has been configured with specific
entailment rules featuring custom SPARQL functions to support the specific
requirements of the presented scenario.

Fig. 1. The overview of the architecture implemented for the PerKApp project.

Finally (Challenge C3), all the data management part is supported by state-
of-the-art triplestores, using named graphs to efficiently organize data (e.g., by
user) and efficiently tuned SPARQL queries for all data access, manipulation
and analysis tasks. As a result, PerKApp provides an evaluation testbed for the
joint use of these technologies at scale and, as mentioned in Sect. 2, it contributes
filling the current gap about the realization of resources and services integrating
knowledge and reasoning capabilities exploiting food, physical activity, and user
personalized information in synergy.
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Key to Health. As a specific case study, PerKApp has been deployed and eval-
uated in the context of the project Key to Health on workplace health promotion
(WHP) inside our institution (FBK). WHP, defined as “the combined efforts of
employers, employees, and society to improve the mental and physical health and
well-being of people at work”,3 aims at preventing the onset of chronic diseases
related to an incorrect lifestyle through organizational interventions directed
to workers. Actions can concern the promotion of correct diet, physical activity,
and social and individual well-being, as well as the discouragement of bad habits,
such as smoking and alcohol consumption. Within the Key to Health project,
PerKApp has been used by 92 FBK’s workers (both researchers and employers)
as a tool to persuade and motivate them to follow WHP recommendations. This
study represented a first step within the “Trentino Salute 4.0” digital health
initiative aiming at extending the availability of the PerKApp platform at the
whole Trentino Province before the end of 2018 and at Italian National level
during the two-year period 2019–2020.

5 Knowledge Layer Components

In this Section, we focus on the components that are mainly involved in the
Knowledge Layer of PerKApp. We show how the platform supports the domain
experts in defining monitoring rules (Sect. 5.1). Then, we describe how reasoning
is implemented to evaluate these rules (Sect. 5.2). Here, we skip a presentation of
the underlying ontology which details are described in [15]. However, we report
a schema including the main concepts in Fig. 2.

Fig. 2. The HeLiS ontology.

3 Luxembourg Declaration on Workplace health promotion in the European Union.
1997.
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5.1 Experts Support Facilities

As mentioned in Sect. 3, one of the challenges we wanted to address was the
development of flexible facilities supporting domain experts in defining rules for
monitoring user behaviors. Moreover, one of the requirements is to support the
collaborative work of domain experts. Indeed, the definition of dietary rules may
lead to disagreement between experts in deciding, for example, the amount of a
specific food that a person has to eat during a day and the weekly frequency.

Domain experts’ facilities have been implemented as an extension of
MoKi [12]. The modeling of concepts and individuals related to the Food,
Activity, and User branches is supported by views and forms enabling create,
read, update, and delete (CRUD) operations. MoKi provides domain experts
with several collaboration facilities (e.g., discussion pages, revision history),
whose effectiveness was empirically confirmed [16]. Here, we want to focus on two
flexible facilities offered by the tool: the definition of rules and the monitoring
of user’s behavior.

The definition of rules is supported by an interface that permits domain
experts to create, view, or revise rules in a collaborative way, covering both
the dietary and activity domains. Each form element is associated with one of
the properties of a MonitoringRule instance and can be populated with actual
values supplied by expert to instantiate the rule template, avoiding the need
to learn a formal language for expressing rules. Within the interface, domain
experts are able to select the timing dimension that the rule refers to, the type
of check that the rule has to perform on user data (e.g., the presence of a specific
food or nutrient), the type of entity that the rule has to monitor (i.e., Food,
Nutrient, or Activity), and the name identifying that specific entity. Then, a
comparison operator has to be selected together with the type of operation to be
performed on the acquired data. Finally, other information, like a priority used
for reporting, can be associated with the rule.

The second facility we want to highlight is the real-time monitoring of users’
behaviors where experts can explore the reports generated by the tool. In this
particular case, experts can observe, for a specific meal, the number of associ-
ated violations and their related details. The usefulness of this report is two-fold:
on the one hand, experts can observe how much a user is respecting the rules
assigned; on the other hand, the provided information is useful also for the
experts themselves. Indeed, they can analyze if the evaluation of the modeled
rules in a real-world context is correct or not. This is a critical aspect in a col-
laborative environment and, in particular, in the medical domain due to possible
disagreements between experts in validating the results of the monitoring activ-
ity. In Sect. 7.4, we report a brief discussion about this point by presenting the
results of a comparative analysis between experts on the output provided by the
reasoner in four different real-world scenarios.

5.2 Rule-Based Reasoning

Reasoning in PerKApp has the goal of verifying that a user’s lifestyle is consistent
with the monitoring rules defined by domain experts, detecting and possibly
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materializing violations in the knowledge base, upon which further actions may
be taken. Reasoning can be implemented via the fixed point, forward chaining
evaluation of IF-THEN entailment rules (cf. monitoring rules, which are RDF
individuals in the HeLiS ontology) that implement the semantics of OWL 2 RL
(to account for TBox declarations in the ontology) and of monitoring rules by
matching non-conforming patterns in RDF data and asserting corresponding
Violation individuals.
Aspects of Interest. To effectively implement monitoring rules via rule-based
reasoning, the following aspects need to be taken into accounts:

– Non-monotonic reasoning. The evaluation of monitoring rules involves aggre-
gations (e.g., total calories of a meals) and negation-as-failure (e.g., a food
is not consumed if there is no ConsumedFood for it), which make reasoning
a non-monotonic process where acquiring new data may invalidate previous
inferences.

– Generation of new individuals. The materialization of detected violations
implies the creation of new individuals in the knowledge base, whose identity
is tightly linked to the one of existing individuals (e.g., a meal for a violation
affecting it).

– Interplay with RDFS/OWL reasoning. The evaluation of monitoring rules
(e.g., that a meal must contain cereals) relies on the prior computation of
OWL 2 inferences (e.g., to determine that RiceFlakes are Cereals), while
at the same time resulting violation assertions can be the subject of further
RDFS/OWL inferences.

– Static/dynamic data. The Food, Activity, and Monitoring branches of the
ontology are largely static and are available up front, allowing to pre-compute
inferences over this data and/or to optimize the entailment rules used real-
time on user data.

– Per-user reasoning. As monitoring rules operate on a single user, reason-
ing can be done on a per-user basis achieving scalability via the paral-
lel/distributed processing of multiple users at the same time.

Reasoning Workflow. We perform reasoning in PerKApp using RDFpro [14],
a tool that allows us to consider the aforementioned aspects by supporting out-
of-the-box OWL 2 RL and the fixed point evaluation of INSERT... WHERE...
SPARQL-like entailment rules that leverage the full expressivity of SPARQL
(e.g., GROUP BY aggregation, negation via FILTER NOT EXISTS, derivation of
RDF nodes via BIND). We organize reasoning in two offline and online phases
as shown in Fig. 3.

Offline, a one-time processing of the static part of the ontology (Food, Activ-
ity, Monitoring branches) is performed to materialize its deductive closure, based
on OWL 2 RL and some additional pre-processing rules that identify the most
specific types of each Nutrient individual (this information greatly helps in
aggregating their amounts). The resulting closed ontology is then used to expand
a set of PerKApp-specific entailment rules that evaluate monitoring rules on the
dynamic user data described by the User branch of the ontology. The expanded
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rules are responsible of: (i) computing the OWL 2 RL deductive closure of user
data; (ii) assert Violation individuals; and (iii) enrich these individuals with
various triples according to the Violation model in the ontology. The expan-
sion process consists in pre-computing the matches of specific rule body atoms
that can only appear in the static ontology (e.g., rdfs:subClassOf statements),
producing variable bindings that are replaced in entailment rules to derive a new
(larger) set of simpler rules that can be evaluated more efficiently.

Online, each time the reasoning is triggered (e.g., a new meal or performed
activity is entered), the user data is merged with the closed ontology and its
deductive closure based on the expanded rules is computed. This process can
occur both on a per-user basis or globally on the whole knowledge base. The
resulting Violation individuals and their RDF descriptions are stored back in
the knowledge base.

Rule Example. We report below an example of PerKApp entailment rule
responsible of detecting violations of DAY-Rules constraining the daily amount
of calories consumed.

INSERT { ?v :hasViolationRule ?rule; :hasViolationQuantity ?cal;
:hasViolationUser ?user; :hasTimestamp ?checkTs. }

WHERE { { SELECT ?rule ?user ?timestamp (SUM(?a / ?e * ?fc) AS ?cal)
WHERE { ?rule a :MonitoringRule; :timing :Day; :command "hasCalories";

:appliesTo/:containsUser? ?user.
?meal :hasUser ?user; :hasTimestamp ?ts; :hasConsumedFood ?cf.
?cf :amountFood ?a; :hasFood [:amountCalories ?fc; :ediblePart ?e]
BIND (:computeTimestamp(:Day, ?ts) AS ?checkTs) }

GROUP BY ?rule ?user ?checkTs }
?rule :hasOperator ?op.
OPTIONAL { ?rule :hasMonitoredValue ?val }
OPTIONAL { ?rule :hasMonitoredValueInterval ?interval.

?interval :lowerBound ?lower; :upperBound ?upper. }
FILTER (?op = "equal" && ?cal != ?val || ?op = "less" && ?cal >= ?val ||

?op = "greater" && ?cal <= ?val || ?cal < ?lower || ?cal > ?upper)
BIND (:mintViolation(?rule, ?user, ?checkTs) AS ?v) }

The nested SELECT query takes a monitoring rule and groups affected meals
by user and by the check timestamp where daily rules for that meal should be
evaluated (computed via a SPARQL custom function implemented in Java). The
sum of calories is computed for each monitoring rule, user, and check timestamp.
The rest of the WHERE clause evaluates the monitoring rule operator against the
specified target value or value interval. If a violation is detected, a URI for a

Fig. 3. Reasoning workflow in PerKApp.
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new Violation individual is minted and that individual and its core violation
data are asserted by the INSERT clause.
Scheduling. We leverage the distinction among UB-Rules, DAY-Rules, and
WEEK-Rules to schedule the online reasoning phase at different times to improve
efficiency:

– UB-Rules are evaluated in real-time on a meal or performed action immedi-
ately after they are received on the server, to enable the possibility of pro-
viding an immediate feedback to users. This kind of reasoning suffers of the
possibility of high concurrency due to the amount of people providing their
data during a small time interval. Hence, by restricting to evaluate only the
necessary UB-Rules after each meal or activity, we are able to manage poten-
tial bottlenecks in elaborating data.

– DAY-Rules and WEEK-Rules are evaluated in background, respectively on a
daily or weekly basis. Their evaluation implies the collection and aggregation
of relevant amounts of data, requiring significant time for being analyzed.
Therefore, the evaluation of these rules is scheduled at night or in other time
slots when the system is relatively idle, so to avoid affecting the performance
of the whole system.

6 The PerKApp Platform in Action

In order to explain in a clearer way which are the structures of the monitoring
rules generated through the actions of the domain experts and the data acquired
by the users, we describe here a simple scenario that will help the comprehension
of how the reasoner, described in Sect. 5.2, works.

Let us consider the following scenario: Michelle is a sales agent of an impor-
tant company. Her working days are very stressful especially in the morning,
where she often has to drive for long distances for reaching her customers. After
her workday, she uses to run as relaxing practice. In the last period, she started
to have some dizziness during the morning and, sometimes even while driving.
After a colloquium with her doctor, he noticed that she is used to have very light
and quick breakfast and that the level of physical activity she does is maybe too
much with respect to the diet she is following. For this reason, her doctor asked
her to use the PerKApp application for monitoring what she eats in the morning
and which is the actual level of physical activity she does. The doctor ask her to
follow three rules: (i) the amount of calories for breakfast has to be higher than
250; (ii) the breakfast always has to contain at least 80 grams of cereals; and,
(iii) she does not have to run more than 45 min.

At first stage (cf. Figure 4), the doctor creates a user associated to Michelle,
and details her profile. Then, he defines the three rules that the PerKApp system
has to validate every day.

For the first two days, Michelle correctly inserts the data about her breakfast
and physical activity as shown in Fig. 5.

Based on this data, the ontology integrated within the PerKApp platform
and the RDF encoding of the configured monitoring rules, the PerKApp reasoner
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Fig. 4. Example of a user profile with the description of the associated rules.

Fig. 5. Example of data provided by users and transformed in their structured repre-
sentation.

determines that the amount of calories of the two breakfasts and the amount
of performed physical activity satisfy the monitoring rules MR1 and MR3, respec-
tively. However, the reasoner determines that no cereals where consumed in the
second breakfast, leading to a violation of the cereals rule (MR1). The Violation
individual shown in Fig. 6 is thus asserted in the knowledge base.

Fig. 6. Example of violation (excerpt).

As a result, Michelle did not receive any feedback from the system after the
first breakfast as she respected all the monitoring rules provided by the doctor.
The same happened also after the registration of her physical activities as she did
not exceed the amount of minutes suggested by the doctor. Whereas, she receives
a textual feedback from the PerKApp application after the second breakfast,
communicating that she did not consume the suggested quantity of cereals. This
kind of feedback aims to remember to Michelle that she has to follow doctor’s
suggestions for avoiding the arise of dizziness during the morning. At the same
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time, the doctor is able to see the violations of Michelle. This way, by combining
the generated violations and Michelle’s feedback about her health status after
using the PerKApp application for a certain period of time, the doctor can verify
if his hypothesis were true.

7 Evaluation

In this Section, we report the evaluation activities we performed on the PerKApp
platform with a particular emphasis on the scalability aspect. Indeed, our main
goal is to validate the suitability, and potential drawbacks, concerning the
deployment of the PerKApp platform in bigger scenarios. We start by presenting
an analysis of the data we collected during the first forty-five days of the Key to
Health project (Sect. 7.1) and by extending our observations to a synthetic sce-
nario simulating wider contexts (Sect. 7.2). Then, we report some lessons learned
from the development and deployment of the PerKApp platform (Sect. 7.4).

7.1 Analysis of Real Data

Within the Key to Health project, PerKApp has been used in a period of 45 days
by 92 users , 49 of which have reported data about their meals on a regular basis,
and about their physical activities only occasionally. We thus focus on the meal
data provided by those 49 users, analyzing it as well as the reasoning process
evaluating monitoring rules.

Figure 7a provides an average characterization of the meals inserted by users
based on their type (breakfast, lunch, snack, dinner), in terms of number of
composing foods, calories and main nutrients (carbs, lipids, proteins), and the
number of triples necessary to encode this meal data in the triplestore; a daily
per-user aggregate is also reported. The data give evidence (on average) of a
1500 Kcal daily diet, although users may have omitted some consumed food or
underestimated its amount, either unintentionally (i.e., they forget to enter a
meal) or intentionally (e.g., to “hide” the consumption of unhealthy foods). The
number of triples needed for a meal is in the order of few tens, suggesting that
the representation of meals in the ontology is compact and thus makes easier to
store and manipulate large numbers of meals. On average, 76 triples per user per
day are currently needed, meaning that a small PerKApp deployment supporting
1B triples would manage to store one month worth of meal data for over 400 K
users.

The box plots in Fig. 7c summarize the distributions of reasoning time and the
number of output violations for the three different times reasoning is performed:4

after each single meal to check UB-Rules; at the end of each day for DAY-
Rules; and at the end of each week for WEEK-Rules. Both reasoning time and
the number of violations increase moving from a single meal to a whole week,
as more input data is being processed and more rules can be violated. Each

4 Deployment machine: 2 CPUs Intel Xeon X5690 3.47GHz, 8GB RAM, 160GB HDD.
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Fig. 7. Evaluation on Key to Health scenario: (a) Consumed foods, nutrients and RDF
triples for user-supplied meals, by type and aggregated per user/day; (b) Correlation
between reasoning time and output violations (WEEK-Rules); and (c) Reasoning time
and output violations distributions.

violation corresponds on average to the assertion of 18 triples in the triplestore.
Reasoning takes around 1 s in half of the cases (medians in box plots), but
other cases require much more time (up to 14 s for WEEK-Rules) and lead
to an increase in the average reasoning time (diamond means in box plots).
This variability is the result of the interplay of different factors. In particular,
we observe a significant correlation between reasoning time and the number of
produced violations, shown in the scatter plot of Fig. 7b, that may be partly
justified by the fact that additional entailment rules are triggered to populate
detected violations.

7.2 Assessing Reasoning Performance

We performed some scalability tests to assess the reasoning performance under
different settings. We focused our tests on two aspects. Firstly, we wanted to
observe the time needed by the reasoner for completing the inference process and
for creating the instances of the Violation class, where necessary. Concerning
this validation, we recall that the reasoning is performed per-user (as mentioned
in Sect. 5.2)

Secondly, we desired to analyze the throughput of the system with the aim
of discovering which is the maximum load bearable by the system per unit of
time. In particular, we focused our exploration on knowing how many users can
be analyzed per minute by the system. Collected values may be indicative for
estimating possible hardware requirements for making our platform deployable
into different, larger scenarios, as planned in the “Trentino Salute 4.0” digital
health initiative.
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The configuration of the evaluation procedure deals with two parameters: (i)
the number of days monitored for each user, and (ii) the number of monitoring
rules contained in each profile. Concerning the number of days, we used values
suggested by the domain experts as significant for monitoring purposes: 1, 7, 14,
and 30 days. For the rules, we considered profiles with 1, 10, 50, and 100 rules, to
simulate both simple profiles (1, 10 rules — e.g., typical of the dietary monitor-
ing for healthy people) as well as complex ones (50, 100 rules — representative
of more sensitive situations, with users to be monitored due to particular health
conditions).

The graph shown on the left in Fig. 8 reports the observations of the time
required for performing the reasoning activity.5 On the x-axis, we reported the
number of days for which user’s data are provided, while on the y-axis, we
reported the time necessary for completing the reasoning. There are two aspects
that we may notice. Firstly, the timing necessary for reasoning in the more
complex scenario (30 days and 100 rules) is acceptable for the implementation
of the reasoner in a real-time system. Moreover, we can appreciate how the time
necessary for completing the reasoning by considering simple profiles (1 or 10
rules) remains almost constant, independently of the number of the considered
days. Secondly, we may notice a significant increment of the computational time
when complex profiles are used.

The second aspect we wanted to highlight is the throughput of the system.
The graph shown on the right in Fig. 8 reports the trend of the throughput
of the system with an increasing number of rules. On the x-axis, we reported
the number of days for which user’s data are provided, while on the y-axis, we
reported the number of users per-minute that the system is able to process. By
performing reasoning operation on single-day data, the throughput is acceptable
also for elaborating complex profiles. Indeed, on average the system is able to
process approx. 456 user/minutes in the case that all of them are associated with
profiles with 100 rules. On the contrary, by increasing the number of considered
days, the support for a real-time reasoning starts to become unfeasible. Indeed,
a throughput of less than 100 users per minute could be critical in a crowded
scenario. However, this throughput can be arbitrarily increased using multiple
machines to cope with large scale deployments.

7.3 Usability Evaluation of Experts Tool

The usability of the facilities used by the domain experts for building the moni-
toring rules has been evaluated through the System Usability Scale (SUS), ana-
lyzing the intuitiveness and simplicity of the interfaces. The evaluation protocol
consisted in a multiple use sessions and followed the five steps below:

1. Training meetings with the experts involved in the evaluation for an intro-
ductory explanation of the functionalities available in the tool.

2. Definition of the first bunch of the Mediterranean Diet rules (95 rules).

5 Testing machine: 8 CPUs Intel Core i7 870 2.93GHz, 16GB RAM, 1TB HDD.
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Fig. 8. Time (left) and throughput (right) of the reasoner on the scalability test.

3. Meetings with the experts for collecting questions about functionalities.
Refinement of the interface integrating some improvements requested by the
experts after the first four days of usage were deployed.

4. Definition of the second bunch of the Mediterranean Diet rules (126 rules)
5. Final meetings with the experts and distribution of the evaluation question-

naires.

The usability test of the tool involved six domain experts participated to the
setup of the PerKApp platform for the Key to Health project. According to the
usability test requirements provided by [17], the number of users involved in the
test granted the discovery of 91% of the usability problems. The average score
obtained from the SUS was 81.5, that, according to the adjective rating scale
proposed by [18], corresponds to “excellent”. Finally, the experts agreed about
the capability of provided operators to cover the definition of rules necessary for
supporting the overall monitoring activity of the Mediterranean Diet.

7.4 Lessons Learned

The design and development of the PerKApp platform provided interesting
insights related to the challenges that we needed to address in our experience.

Concerning Challenge C1, we needed to address the lack of detailed struc-
tured data about both the food and physical activity domains. In our experi-
ence, we noticed that available resources for the food domain were not granu-
lar enough. While, concerning the physical activity domain, structured resource
representing, not only an activities classification schema, but also other detailed
information like the energy consumption and the effort level, were not available.
Thus, despite the number of resources available in the Semantic Web community,
our scenario demonstrated the necessity of further effort for the construction of
resources with a level of detail useful for supporting the development of smart
applications.

Regarding Challenge C2, we validated and discussed earlier in this section the
effectiveness of the reasoning process implemented into the PerKApp platform.
Our results derived from the optimization of rules design and rules evaluation
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schedule. In a first stage, we designed few complex rules for covering all moni-
toring activities. On the one hand, we were able to cover several constraints with
one rule. But, on the other hand, the computational time required for evaluating
these rules was high. Hence, in a second stage, we opted for splitting the rules in
more simpler ones and, at the same time, to schedule their evaluation depending
on their timing property. This strategy led to an improvement of the overall
reasoning performance and allowed us to have an easier control on the overall
reasoning process (exactness of the Violation instances, debugging operations,
etc.). In the scenario addressed by the current deployment of PerKApp, reason-
ing operations are performed on sets of triple describing users’ specific events.
Part of the future work will be the investigation of stream reasoning strategies
when it is necessary to monitor a continuous flow of information as well as to
exploit learning strategies for suggesting, if possible, new rules or adaptations of
existing ones. An example within the health domain is the real-time monitoring
of the glycemic index.

Concerning Challenge C3, we observed the platform’s behavior after the inte-
gration of an open source solution, namely RDF4J6, for supporting data stor-
age. The performance analysis highlighted that this solution was feasible for a
real-world scenario. In particular, we observed the capability of managing the
parallel data management operations in an efficient way. Thus, we may state
that the engine implemented into RDF4J satisfies the scalability requirements
of the PerKApp platform. Even if this finding sounds trivial, we believe that it is
important to mention this result as a feasibility proof concerning the integration
of open source solutions into real-world environments.

Finally, we mentioned in the Challenge C4 the necessity of supporting experts
in specifying and revising users’ prescriptions through the use of a collaborative
tool. One of the potential issues is that the collaborative definition of these con-
straints may lead to possible disagreements between experts. In order to evaluate
if the risk of having these disagreements truly exists, we built a set of 4 scenarios
from the food consumption data collected in our triplestore, and we sent them
to a group of 12 experts that were not involved in the setup of the PerKApp plat-
form7. For each scenario, we proposed a list of possible violations based on the
prescriptions modeled into the PerKApp platform and we asked them to confirm
if such violations were correct or not. By analyzing the provided responses8, we
can observe that a full agreement was never reached. From this result, we may
infer that a tool for supporting experts in the rule definition activity is necessary
for trying to limit the disagreement between them. The necessity of reaching an
agreement between experts is clear when they work for the same organization: if
a healthcare organization has to monitor and support patients, the implemented
guidelines should not be expert-dependent. Thus, possible disagreement between
them has to be reconciled.

6 http://rdf4j.org/.
7 The selected experts are nutritionists of the Trento and Milan healthcare districts.
8 https://perkapp.fbk.eu/downloads/ISWC2018 inuse open issues dieta mediterrane

a.csv.zip

http://rdf4j.org/
https://perkapp.fbk.eu/downloads/ISWC2018_inuse_open_issues_dieta_mediterranea.csv.zip
https://perkapp.fbk.eu/downloads/ISWC2018_inuse_open_issues_dieta_mediterranea.csv.zip
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8 Conclusions

In this paper, we presented the PerKApp platform and its key component, i.e.,
the rule-based reasoner adopted for monitoring users’ behaviors in order to sup-
port the promotion of health lifestyles. We discussed the role of the knowledge
base within the PerKApp platform and how it is equipped with monitoring rules
inserted by domain experts through an easy-to-use interface integrated as an
extension of the MoKi tool. Then, through a running example, we described how
the reasoner operates on the data provided by the users, and we evaluated the
reasoner performances by discussing: (i) the time required for processing users’
data under different settings; (ii) the throughput of the system with the aim
of inferring possible hardware requirements for deploying the PerKApp platform
into different environments; and (iii) how the complexity of the users’ profiles
(i.e. the number of monitoring rules associated with each user) affects the overall
efficiency of the system. Results demonstrated the possibility of adopting the sys-
tem in real-world scenarios, and the reported lessons learned provide insights for
future developments, in order to improve the overall efficiency, and thus allowing
the deployment of the PerKApp platform in more challenging environments.
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