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Abstract. We report on our efforts and faced challenges in using Seman-
tic Web technologies for the purposes of supporting healthcare ser-
vices provided by Babylon Health. First, we created a large medical
Linked Data Graph (LDG) which integrates many publicly available
(bio)medical data sources as well as several country specific ones for
which we had to build custom RDF-converters. Even for data sources
already distributed in RDF format a conversion process had to be applied
in order to unify their schemata, simplify their structure and adapt them
to the Babylon data model. Another important issue in maintaining and
managing the LDG was versioning and updating with new releases of
data sources. After creating the LDG, various services were built on top
in order to provide an abstraction layer for non-expert end-users like
doctors and software engineers which need to interact with it. Finally,
we report on one of the key use cases built in Babylon, namely an AI-
based chatbot which can be used by users to determine if they are in
need of immediate medical treatment or they can follow a conserva-
tive treatment at home. To match user text to our internal AI-models
an NLP-based knowledge extraction and logic-based reasoning approach
was implemented and evaluation provided with encouraging results.

1 Introduction

The use of Semantic Web technologies such as Linked Data have started to
be used extensively in many real-world applications [5,8,15]. Especially in the
biomedical domain, OWL has been adopted since the early days of the Semantic
Web and used to create a large number of medical ontologies [19], prominent
examples of which are SNOMED [22], FMA [11], NCI [10], the Disease ontol-
ogy [20], and many more. Many of these ontologies cover different and comple-
mentary topics such as genes, human phenotypes, proteins, and so on, and can
be quite heterogeneous making it hard to retrieve information in a uniform way.
Linking them under a homogeneous data model over which applications can be
built would be beneficial [5,18].

Semantic technologies have also been adopted within Babylon Health.1 Baby-
lon offers healthcare services through a mobile application. Users can register to
1 https://www.babylonhealth.com/.
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the app and have video consultations with doctors and healthcare professionals.
The service also allows doctors to prescribe drugs to patients which can receive
them from pharmacies of their choice. Moreover, patients can also receive refer-
rals to health specialists or book lab exams with nearby facilities. Besides consul-
tation with doctors, Babylon has been developing an AI-based doctor accessible
through a chatbot, which can be used for symptom checking and triaging—that
is, determining if the conditions that a user is entering in the chatbot are critical
and he/she is in need of immediate medical attention or he/she can follow a
conservative treatment at home.

Various services within Babylon generate, exchange, and consume clinical
and health data and knowledge. For example, information extraction and text
annotation services have been developed in order to process patient entered text
and recognise the relevant medical terms that are entered. These terms may need
to be compared with symptoms and risk factors in our symptom checking and
triaging engines or with past diagnosis stored in the user profiles. Various other
services in Babylon like drug prescribing or billing also deal with medical data
like drugs, their side effects, contraindications and more.

To support the above services a medical Linked Data Graph (LDG) has been
created by converting various medical data sources into RDF. Hence, all data
within Babylon (diagnosis, drugs, etc.) are encoded using codes from medical
ontologies like SNOMED, NCI, ICD-10, and more. Standards are heavily used
in order to represent complex medical conditions and reasoning services have
been implemented in order to achieve high degree of interoperability and inter-
communication between the services. Some of the challenges faced in realising
this use case are the following:

– Biomedical data sources are highly heterogeneous and custom converters had
to be implemented in order to unify and harmonise them.

– Although efforts like BioPortal [19] and Bio2RDF [2] already offer a very large
number of medical ontologies in RDF, several country specific clinical data
sources are missing.

– OWL often exhibits complex structure (e.g., complex and/or nested class
expressions) which would be impossible to be interpreted by our non-expert
end-users (mostly doctors and software engineers). Consequently, even data
sources distributed in OWL had to be converted to our simplified model.

– Updating our LDG with new releases of the data sources is a non-trivial issue
since services already operate over the existing schema and changes may alter
their behaviour.

– It would not be possible for our end-users to interact with triple-stores and use
SPARQL, hence abstraction layers, services, and browsers had to be imple-
mented in order help them use and feel comfortable with Semantic Web tech-
nologies and the LDG.

– Comparing OWL classes with existing reasoners is too strict in a real-world
setting where one has to deal with language ambiguity and variability.

In the following, we first present our efforts in creating a medical Linked Data
Graph and show how we addressed the above challenges. Next, we present several



Supporting Digital Healthcare Services Using Semantic Web Technologies 293

of the services we built around it in order to make the content accessible and easy
to use by our non-experts. In more detail, we built a middle-ware service, called
ClinicalKnowledge, whose purpose is to provide an abstraction layer to the LDG
through a set of REST services. In addition, we have also implemented a web-
browsing tool which can be used to search for classes and see their content like
relations to other classes, direct super-classes, and more. Although, our LDG
does not store complex OWL class expressions, such expressions are used in
other components and services within Babylon like the triaging engine or patient
profiles where complex medical conditions are formed by combining IRIs from
the LDG and using OWL constructors. These expressions need to be compared
with each other in order for services to exchange knowledge and interoperate
and for these purposes a custom (hybrid) reasoner was implemented. Finally,
we report on the triaging use-case built in Babylon and the role of our hybrid
reasoner in matching user text to the internal triaging and symptom checking
models. Preliminary evaluation of our Semantic Web-based (NLP plus logic)
solution provided with encouraging results.

2 Building a Medical Linked Data Graph

The overall architecture of our platform is depicted in Fig. 1. The pipeline cur-
rently supports structured (RDF/OWL) and semi-structured (XML, CSV/TSV)
data sources. All sources (even those already distributed in RDF) undergo a con-
version process in which their schema and structure is processed in order to adapt
it to the RDF model used in Babylon and reconcile their differences as much as
possible. This conversion process also links the sources to an Upper Level Ontol-
ogy which consists of an abstract medical model via which access is realised. Since
data sources often feature overlaps, ontology alignment algorithms [21] are also
used in order to establish mappings between the various sources and improve the
level of integration. All converted data sources as well as the computed mappings
are loaded into GraphDB.2 The pipeline also supports the integration of infor-
mation extracted from unstructured (web) data sources via Machine Reading [9]
and crawling but the description of this pipeline is out of the scope of this paper.
On top of the LDG a set of services is provided for outside clients to interact
with the LDG. As it can be seen in the architecture, the LDG is continuously
updated with new data sources as these are released. In the following sections
we present further technical details about the aforementioned components.

2.1 Data Sources

Today a wealth of medical knowledge and data sources are available on-line.
Several of these are already distributed in OWL and/or RDF, prominent exam-
ples of which are SNOMED, NCI, FMA, the ontologies in BioPortal, and many
more. The UMLS project also consists of a continuous effort towards integrating

2 https://ontotext.com/products/graphdb/.

https://ontotext.com/products/graphdb/
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Fig. 1. Architecture of Babylon’s linked data graph generation pipeline

and linking biomedical ontologies under a common vocabulary and providing
homogeneous access through the UMLS semantic network [17]. The Babylon
LDG uses several ontologies from UMLS, however, two issues were identified:
(i) UMLS does not contain the most up to date releases of data sources, e.g.,
new releases of SNOMED are integrated with a six months delay, and (ii) it is
missing some country specific data sources like dm+d (which is actually updated
weekly), the Canadian Clinical Drug Dataset, and more.

Other prominent efforts in integrating biomedical data sources under a com-
mon RDF-based model is the Bio2RDF effort [2,4]. Bio2RDF could be a poten-
tial fit for the Babylon use case, however, it mostly focuses on Genes, Proteins,
Genomics, and so forth, while Babylon mostly focuses on clinical services like
Diseases, Risk Factors, Symptoms, and Drugs, so data sources like SNOMED
and NCI which are missing from Bio2RDF are critical. In addition, most impor-
tantly the schema and structure of the generated Linked Data Graph had to be
under the control of Babylon in order to be easily customisable and adaptable to
internal service requirements. For these reasons several custom converters had
to be implemented and an LDG was constructed from scratch.

The LDG was built by integrating almost 300 structured as well as semi-
structured data sources. We have used most of the UMLS, several ontologies
from BioPortal, latest versions of well-known ontologies like FMA, SNOMED,
NCI, coding systems like ICD-10(pcs) and ReadCodes, as well as several country
specific sources and extensions like dm+d, RxNorm, and more. Table 1 presents
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Table 1. List of Important Data sources in our LDG.

Ontology s/o IRIs properties �{iri1 p iri2 .} �{iri1 p Lt .} �
General Medical Vocabularies

SNOMED 326 k 78 926 k 1,1 m 486 k

NCI 133 k 204 298 k 1,8 m 147 k

CHV 57 k 8 0 247 k 0

MeSH 2 m 44 3,6 m 9,6 m 187 k

MedDRA 26 k 8 0 885 k 34 k

Drug Ontologies

dm+d 309 k 33 444 k 1,6 m 0

SIDER 1 m 28 2,6 m 8,4 m 0

Drugbank 10 m 36 74 m 195 k 0

RxNorm 114 k 41 989 k 1,12 m 200 k

DailyMed 10 k 31 57 k 80 k 0

Coding Systems

OPCS-4 11 k 6 0 22 k 9 k

ICD-10 11 k 12 11 k 35 k 11 k

ICD-10pcs 190 k 9 0 k 708 k 190 k

CTV3 322 k 97 679 k 868 k 278 k

Read2 89 k 9 0 355 k 89 k

statistics about some of the sources integrated in our LDG; it shows the number
of classes and individuals (i.e., IRIs in the subject or object position of triples),
the number of properties, the number of triples of the form s p o . where both
s and o are IRIs, and the number of such triples where o is an owl:Literal
and the number of subClassOf axioms (�). For readability we have rounded up
numbers and used “k” to indicate thousands and “m” to indicate millions. In
total the Babylon medical LDG consists of about 280 million triples which were
loaded in GraphDB.

2.2 Schema and Data Model

Since the LDG is stored in a triple-store all data sources are serialised to triples.
This creates problems when the original source contains complex class expres-
sions that require the use of blank nodes in order to be serialised. For example,
the OWL axiom Malaria � ∃mayHaveFinding.Fever in the NCI ontology is seri-
alised into the following set of triples, where : x is a blank node:

Malaria rdfs:subClassOf : x .
: x rdf:type owl:Restriction .
: x owl:onProperty mayHaveFinding .
: x owl:someValuesFrom Fever .
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Clearly, it will be cumbersome for services to operate over such structures as
well as problematic for non-expert end-users to browse over them. Hence, our
converters perform some level of simplification and normalisation whenever this
is possible. For example, the above OWL axiom is serialised into the following
triple:

Malaria mayHaveFinding Fever .

Other examples of performed normalisation are axioms of the form A ≡ C � D
which are normalised into C � D � A,A � C, and A � D. From them only
those that can be translated to triples without the use of blank nodes are added
to our LDG (i.e., the latter two in the above case) while the others are saved in
OWL format for potential future use like reasoning.

Another issue is that authors of different data sources choose different ways
and names to represent the same information. For example, at least the following
properties have been found in various ontologies for encoding synonym labels:

http://snomed.info/field/Description.term.synonym
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
http://www.w3.org/2004/02/skos/core#altLabel

In order to unify the model, our converters are replacing these labels with the
label skos:altLabel. Every class has zero or more skos:altLabel properties
attached to it and exactly one skos:prefLabel property per language tag.

Besides schema harmonisation and simplification, the converted ontologies
need to also satisfy some logical and structural constraints. First, every converted
ontology O contains exactly one top-level “root” class—that is, a class Oroot

such that for every atomic class A ∈ Sig(O) we have O |= A � Oroot and
Oroot � A �∈ O. Second, O must not contain any cluster of equivalent classes—
that is, no list of classes A1, . . . , An should exist such that {A1 � A2, A2 �
A3, . . . , An � A1} ⊆ O. From a semantic point of view such “loops” are not
problematic [1], however, these complicate implementations of graph algorithms
like, traversing the subClassOf hierarchy, computing paths between two entities,
defining the depth of an ontology, and so one, hence it was decided that loops in
imported ontologies would be eliminated. This is done using a depth-first search
algorithm which detects them and removes the last subClassOf link.

2.3 Source Updates and Version Management

The medical domain is a very dynamic one and sources are updated very fre-
quently. For example, a new version of SNOMED and UMLS is released every
six months while dm+d is released every week. It is critical that updates are
imported in the Babylon system as soon as possible since these can provide data
on new or retracted drugs, risk factors, diseases, etc. Updates, however, bring the
issue of ontology versioning and management. Note that obsolete content cannot
be simply removed from the LDG as it may be in use by some services, thus a
careful and controlled migration plan is needed. We explored two approaches to
ontology versioning:

http://snomed.info/field/Description.term.synonym
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
http://www.w3.org/2004/02/skos/core#altLabel
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1. Encode source version in class IRIs. An advantage of this is that the content
associated with IRIs never changes and services always receive the same con-
tent for the same set of input IRIs. A disadvantage is that, as some services
cache IRIs, IRI migration to new versions is required and is a complicated
process.

2. Keep IRIs version unaware and manage content updates behind the scenes.
An advantage is that, migration is not required, however, when a source is
updated services may receive unexpected or different results for the same IRI
as content has changed.

From the above we are currently following approach 1. and the main motivation
is to ensure that services have a fixed behaviour which does not change with
source updates. To implement this approach our converters make IRIs version
aware by using the following scheme:

bblPrefix:{ontology id}-{ontology version}/{resource id}
For example, the class Malaria in NCI versions 17.07e and 17.12 is represented
as follows:

http://kb.babylonhealth.com/nci thesaurus-17.07e/C34797
http://kb.babylonhealth.com/nci thesaurus-17.12/C34797

This way two different versions of the same data source can co-exist in the
LDG. When a new version is integrated, owners of services within Babylon are
notified and they start to migrate gradually to the new IRIs. This process can
be asynchronous as different services may migrate at different points in time,
so the two versions of the same data source may co-exist for even up to six
months. After migration is successfully completed the old converted data source
is removed from the LDG.

2.4 Upper Level Ontology

Different ontologies and datasets may use different vocabulary and structure in
order to represent the same real-world medical concept. For example, to represent
medical conditions one ontology may use the class Disease another the class
Disorder while another the class ClinicalFinding. For that purposes the use of an
upper-level-ontology (ULO) which will provide uniform and source independent
access to the underlying LDG has been advocated [7,12]. In the above example,
the ULO can contain one class ulo:Disease and all the aforementioned classes
can be declared to be subclasses of it. The classes and properties in ULO are
those entities that are exposed to the services that are using the LDG and are
called Semantic Types. Every class in the LDG is associated with at least one
semantic type.

In Babylon we adopted the UMLS semantic network (SN) [3] as a starting
point for our ULO, however, this was subsequently extended or altered when
seemed necessary. More precisely, if a data source contained a top-level class

http://kb.babylonhealth.com/nci_thesaurus-17.07e/C34797
http://kb.babylonhealth.com/nci_thesaurus-17.12/C34797


298 G. Barisevičius et al.

that we feel could be interesting to be exposed to the services, then we created
a new class in the ULO with the same label and linked the imported ontology
class with the new one. For example, UMLS SN does not contain a class for
rare diseases whereas the Babylon LDG includes the RareDisease ontology from
BioPortal which provide such a grouping of diseases.

Ontologies that we import from UMLS are already associated with entities in
ULO (since our ULO originates from the UMLS SN), however, ontologies which
we convert using custom converters are not, hence these have to be assigned one.
Given an ontology O and our ULO Ou the process of assigning Semantic Types
to the classes in O is the following:

1. Identify “top-level” classes in O that represent a similar real-world notion
as some class in Ou. By similar notion we mean that both O and Ou con-
tain classes with the same or similar labels; e.g., both contain classes with
label “Disease” (same label), or one contains a class with label “Physiological
Process” and the other a class with label “Physiological Function” (similar
label). In essence this is a manual alignment process.

2. The relations identified in the previous step between a class C in O and a
class D in Ou are recorded in the converter configuration in the form 〈C,D〉.

3. The converter for O reads the configuration and creates for every link 〈C,D〉
and every O |= C ′ � C the triple C bbl:hasSTY D . assigning the Semantic
Type D to every “descendant” class of C in O.

A similar approach is followed for properties, however, properties of an imported
ontology are linked to properties from ULO using subPropertyOf axioms. For
example, “part of” relations in SNOMED, FMA, and the Alzheimer’s Disease
ontologies are declared to be subPropertyOf the ULO partOf relation while
six“has ingredient” relations from different data sources are also linked under
the ULO hasIngredient property.

Besides accessing the data through a unique abstract model, the ULO can
also be used for checking consistency of the underlying LDG [12]. Some of the
top-level classes of the ULO have been declared to be disjoint, e.g., Organism
and ManufacturedObject. Then, the following query checks if the LDG contains
classes that that are sub-classes of both of them.

ask where { ?x rdfs:subClassOf :Organism, :ManufacturedObject . }
which should return false.

In total our ULO contains 817 classes, 349 properties, 816 subClassOf axioms
and 332 subPropertyOf axioms.

2.5 Source Alignment

An important part of data integration is discovering links (mappings) between
the entities of the various different data sources. For example, class Malaria
appears in at least 15 different sources in UMLS, as well as in SNOMED, NCI,
and more. In each of them complementary information may be described about
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this condition, e.g., one source may describe its symptoms, another drugs to
treat it and so on. It would be beneficial if we can establish mappings between
these classes as then, when one queries for information about this disease data
from all sources would be returned.

For that purpose a large effort was spent towards pair-wise aligning the
imported data sources. Alignments were build by mostly using the mappings
included in UMLS (which are used to build the silver standard in the OAEI
campaign [13]); e.g., SNOMED Malaria is mapped to the NCI one if they share
the same UMLS code. Mappings were initially stored in GraphDB as equivalence
axioms, e.g., if class A is mapped to class B then axiom A ≡ B is added. However,
it quickly became clear that this approach does not scale as these axioms cause
a combinatorial explosion of the inferred statements computed by GraphDB
during loading (GraphDB materialises inferences at loading); more precisely, all
ancestors and descendants of A (resp. B) become ancestors and descendants of
B (resp. A). Our partial solution was a bit unconventional. Instead, we encoded
mappings using owl:sameAs and used GraphDB’s owl:sameAs optimisation3 to
significantly reduce the number of inferred statements.

We were able to load about 3 million mappings between entities of the LDG,
however, it has become apparent that we have reached the limits of the capa-
bilities of state-of-the-art triple-stores. Loading the LDG with these mappings
takes about 36 hours and our attempts to load all computed mappings (about
4.5 million) have failed.4 Another issue that has been raised is that although
mappings help us complement the information that each source contains for
each class it also causes duplication and redundancy. If all Malaria classes have
a skos:definition in all these 15 sources and all of them are linked with
owl:sameAs, then after reasoning every such class will contain 15 such defini-
tions. Moreover, the ancestors of each class will be the union of the ancestor of
each of these classes creating a blow-up in the number of ancestors of a class. To
alleviate this issue one needs to built post-processing filtering mechanism on top
of the LDG [5,18]. Such mechanisms were implemented, however, initial results
show that they do not scale well in practice.

3 Data Usage and Querying

In the current section we provide some details about mid-level services have been
built on top of our LDG. These services provide a form of abstraction layer for
accessing and browsing the LDG or for comparing classes w.r.t. the knowledge
stored in the LDG.

3 http://graphdb.ontotext.com/documentation/standard/sameas-optimisation.html.
4 Alternative triple-stores have also been investigated. We have also tried non-

materialisation-based systems which although much faster in loading (as they don’t
perform reasoning) they fail at query time when they perform backward-chaining
reasoning.

http://graphdb.ontotext.com/documentation/standard/sameas-optimisation.html
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Fig. 2. Class browsing page.

3.1 Querying with Clinical Knowledge

To abstract away from the SPARQL syntax and provide our end-users with the
ability to easily retrieve data from the LDG we have built a data access service,
called ClinicalKnowledge (CK). CK is using the ULO which, as stated, is the
abstract unified model of our medical LDG. CK provides 50 REST services which
implement simple or more complex SPARQL queries over our LDG possibly with
post-processing on the returned results. Those 50 services are grouped into 10
categories which can be depicted in Fig. 2. The most important services are the
following:

– Disease: provides services to retrieve information about diseases, e.g., asso-
ciated diseases, causes of a disease, associated drugs, symptoms, etc.

– Label: provides label-based search services, e.g., given some word return a
list of IRIs having this word as skos:prefLabel or skos:altLabel.

– Semantic Types: given an IRI, services of this category can be used to
retrieve its assigned Semantic Type (i.e., ULO classes), or given a Semantic
Type to list all classes annotated with it, and more.

– Paths: Given an IRI, services of this group return paths of classes (w.r.t.
subClassOf) from that IRI to the top-level or to leaf classes of the LDG.

3.2 Browsing with KB-Explorer

Besides retrieving data in a tabular format using CK, an important part for
building services in Babylon or debugging existing ones is to browse through the
stored data and understand them. For these purposes an in-house web-browser
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Fig. 3. Class browsing page.

for our LDG was implemented, called KB-explorer. A screen-shot of the class
page of the KB-explorer for the class Malaria is depicted in Fig. 3.

The following information can be depicted for each class (some of this infor-
mation is concealed in order not to overwhelm users):

– Preferred and alternative labels of the class with their language tags.
– The semantic types from ULO that have been assigned to this class, in this

case DisorderDueToInfection.
– The skos:definition associated to the class (in this case there are two def-

initions coming from different sources).
– The paths in the hierarchy from the current class to top-level classes.
– Direct super/sub-classes of a class as well as its relations with other classes
– External links to DBpedia and/or Wikidata.

Through KB-explorer users can also browse the classes and properties of
ULO as well as annotate medical terms in a text using an annotator that has
been built in Babylon for experimentation purposes.

3.3 Class Comparison with a Hybrid Lightweight Reasoner

Babylon services produce and consume classes which are constructed using IRIs
from the LDG. In several cases, a class expression may have to be formed in order
to capture the medical condition of a patient. For example, the LDG contains
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no pre-defined class for the notion of a “recent injury in left leg” but this can be
captured using OWL class expression using SNOMED atomic classes in either
of the following ways:

C1 = RecentInjury � ∃findingSite.LeftLeg
C2 = Injury � ∃occurred.Recent � ∃findingSite.LeftLeg

Inevitably, different services within Babylon will use either of the above (and
possibly even more) ways to represent this real-world notion. It would be bene-
ficial for interoperability purposes if we can determine that these two classes are
equivalent. In theory, this can be done with the help of an OWL reasoner. If our
LDG (Oldg) contained the axiom ax := RecentInjury ≡ Injury � ∃occurred.Recent
then we would indeed have Oldg |= C1 ≡ C2. Unfortunately, in a very large num-
ber of cases such axioms are missing from Oldg (in fact, the above axiom does
not exist in SNOMED and hence neither in Oldg) and, moreover, the vast size
of Oldg makes it at least challenging to use any of the existing OWL reasoners
to perform sub-class reasoning.

For these reasons a custom lightweight approximate reasoner was imple-
mented on top of GraphDB. Since we are mostly dealing with class expres-
sions containing existential quantifiers over which GraphDB is incomplete [6],
the reasoner is using some of the consequence-based techniques presented in the
literature [14] to improve the inference capabilities of GraphDB. However, it
does not implement a complete EL calculus due to scalability reasons. In addi-
tion, in order to tackle the issue with the lack of axioms for classes (like the
one mentioned above) it is also using NLP-based knowledge extraction tech-
niques to extract (possibly missing) axioms from class labels. For example, con-
sider class RecentInjury with preferred label “Recent Injury”. Dependency pars-
ing [16] is applied on the label in order to break it into word “Injury” with
modifier “Recent”. Then, Named Entity Disambiguation is applied to associate
IRIs from the LDG to each of these words; assume that we successfully pick the
IRIs of classes Injury and Recent. Finally, a relation from ULO is selected in an
attempt to ideally build the expression Injury � ∃occurred.Recent. This is then
used to replace class RecentInjury in C1 building C ′

1 which is essentially the same
as C2 hence being able to determine that the two classes are equivalent.

4 Babylon Chatbot and Triaging

Patient triaging is one of the central automated services offered by Babylon
through app’s chatbot. Triaging is the process of sorting patients into groups
based on their need for immediate medical treatment and can be used in hospital
emergency rooms when limited medical resources are only available.

In addition to triaging, Babylon’s chatbot also supports general purpose
queries, like “Get me info for Malaria” or“What are the symptoms of flu”.
Figure 4 presents snapshots from Babylon’s chatbot. Figure 4a depicts the initial
screen prompting the user to enter some text, Fig. 4b depicts a triaging interac-
tion with a user and Fig. 4c an information retrieval one. In order to determine
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Fig. 4. Babylon chatbot

which type of interaction to initiate the original user text goes through a classi-
fier which has been trained in Babylon. In Fig. 4b the user initially entered the
phrase “My head hurts” hence initiating a triaging interaction. In contrast, in
Fig. 4c the user entered the word “Malaria” and the classifier determined that
the user entered a general information retrieval query.

Triaging is implemented with the notion of a flow. A flow is a directed graph
where every node is a multiple choice question to be asked to the user and the
answers determine the subsequent node and question to be asked. Every answer
in a node is associated with an OWL class expression which is built using entities
from the LDG and possibly also OWL constructors. For example, a node can
contain the question “Right, do you have any pain?” with the following potential
answers and associated classes:

– “ansId”: 1,“txt”: “No”, None.
– “ansId”: 2,“txt”: “Yes, in one part of my head”, Headache � ∃fSite.HeadPart.
– “ansId”: 3,“txt”: “Yes, a general headache”, GeneralizedHeadache.

Flows are created by in-house doctors using a platform developed in Babylon.
OWL constructors that have been used so far are ¬, �, � and ∃. For exam-
ple, the answer “Painful to touch scalp or temples” is associated to the class
expression Tenderness � ∃fSite.(Scalp � Temples). Doctors have so far created
flows for nineteen body parts or medical conditions some of which are, Fever,
Chest, Pregnancy, Foot, Mouth, Head, Abdomen, and more. A flow can contain
more than 50 nodes and each path in this graph encodes a potential interaction
with the user until a conclusion is reached. So far more than 1,000 possible inter-
actions have been encoded in the form of flows. The head-flow used to produce
the triaging interaction in Fig. 4b is depicted in Fig. 5.
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Fig. 5. Head flow

Which flows to activate given some user text is accomplished using our
Knowledge-Extraction (KE) and hybrid reasoner methods. From a user text
like “I feel a pain around my heart” our KE method extracts the class expres-
sion Pain�∃fSite.Heart. Then, the reasoner is used to find all flows which contain
nodes that are superclasses or this class; e.g., flows that contain nodes annotated
with ChestPain. To evaluate our approach in-house doctors created 680 natural
language queries mimicking the text that users would type into the chatbot
as well as the list of expected superclasses from the LDG. For example, this
test set includes text like“I cut my finger” or “My lower back hurts” while the
expected LDG classes are HurtFinger and LowerBackPain, respectively. We mea-
sured 0.967 precision and 0.799 recall. The approach was compared against a
Machine Learning one based on sentence embeddings and showed better preci-
sion and recall, hence the current setting uses the KE+hybrid reasoner while the
sentence embedder is used as a fall-back solution.

So far the Babylon app has been downloaded about 600 K times within the
UK. Moreover, 392 in-house or contracted doctors have conducted about 135 K
video consultations while there have been about 326 K completed conversations
with the chatbot.

5 Lessons Learnt and Conclusions

We have presented our efforts, challenges, design decisions, and solutions
to problems faced while trying to use Semantic Web technologies in an
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industrial-strength healthcare application in Babylon Health. Our main lesson
learned is that indeed “Linked Data Is Merely More Data” [12]. Following the
best practices described in [12]—that is, an upper-level-ontology, integrity con-
straints to check validity of data, building abstraction layers on top of SPARQL,
etc., does improve usability of the LDG. However, still its vast size and the
heterogeneity of the sources makes it hard to maintain a consistent structure,
comprehend and work with the data, link them using alignment, and build intel-
ligent applications on top. Even if links are discovered, inferring equivalence and
unifying (merging) the linked entities cannot be realised at this scale. Finally,
comparing class expressions using traditional reasoning systems is very restric-
tive and the lack of a complete set of axioms in the background knowledge
provides a limited recall.

On the positive side Semantic Technologies help at least in the following
aspects. Complex class expressions allow us to dynamically represent almost
any medical notion (condition) without the need to pre-define all of them (a task
clearly impossible). The use of formal semantics for comparing classes helped us
achieve a very high precision while the integration of NLP-based techniques also
quite good recall improving on previous purely ML-based approaches. Formal
semantics, integrity constraints, and the ULO also allowed us to ensure further
data quality and consistency while the release of sources using standards rela-
tively easy to create our LDG. Last but not least, materialisation in triples-stores
is helping us infer new knowledge and also execute hierarchy traversal queries in
a scalable way.

Regarding future plans we are currently in the process of re-building our LDG
from scratch. We will follow a more conservative approach starting with few
sources as a seed and enriching them with information from other sources [23].
We are also in the process of further improving our KE and hybrid reasoning
approaches as well as enriching medical data sources with new knowledge.
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13. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I.: Exploiting the UMLS metathesaurus
in the ontology alignment evaluation initiative. In: Proceedings of the 2nd Inter-
national Workshop on Exploiting Large Knowledge Repositories (2012)

14. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence (IJCAI),
pp. 2040–2045 (2009)

15. Knoblock, C.A., et al.: Lessons learned in building linked data for the American
art collaborative. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp.
263–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 26
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