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Abstract. Over the last years, the Semantic Web has been growing
steadily. Today, we count more than 10,000 datasets made available
online following Semantic Web standards. Nevertheless, many applica-
tions, such as data integration, search, and interlinking, may not take the
full advantage of the data without having a priori statistical information
about its internal structure and coverage. In fact, there are already a
number of tools, which offer such statistics, providing basic informa-
tion about RDF datasets and vocabularies. However, those usually show
severe deficiencies in terms of performance once the dataset size grows
beyond the capabilities of a single machine. In this paper, we introduce
a software component for statistical calculations of large RDF datasets,
which scales out to clusters of machines. More specifically, we describe
the first distributed in-memory approach for computing 32 different sta-
tistical criteria for RDF datasets using Apache Spark. The preliminary
results show that our distributed approach improves upon a previous cen-
tralized approach we compare against and provides approximately linear
horizontal scale-up. The criteria are extensible beyond the 32 default cri-
teria, is integrated into the larger SANSA framework and employed in
at least four major usage scenarios beyond the SANSA community.

1 Introduction

Over the last two decades, the Semantic Web has grown from a mere idea for mod-
eling data in the web, into an established field of study driven by a wide range of
standards and protocols for data consumption, publication and exchange on the
Web. For the record, today we count more than 10,000 datasets openly available
online using Semantic Web standards1. Thanks to such standards, large datasets
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became machine-readable [13]. Nevertheless, many applications such as data inte-
gration, search, and interlinking may not take full advantage of the data without
having a priori statistical information about its internal structure and coverage.
RDF dataset statistics can be beneficial in many ways, for example: (1) Vocabu-
lary reuse (suggesting frequently used similar vocabulary terms in other datasets
during dataset creation), (2) Quality analysis (analysis of incoming and outcom-
ing links in RDF datasets to establish hubs similar to what pagerank has achieved
in the traditional web), (3) Coverage analysis (verifying whether frequent dataset
properties cover all similar entities and other related tasks), (4) privacy analysis
(checking whether property combinations may allow to uniquely identify persons
in a dataset) and (5) link target analysis (finding datasets with similar character-
istics, e.g. similar frequent properties) for interlinking candidates.

A number of solutions have been conceived to offer users such statistics about
RDF vocabularies [17] and datasets [7,9]. However, those efforts showed severe
deficiencies in terms of performance when the dataset size goes beyond the main
memory size of a single machine. This limits their capabilities to medium-sized
datasets only, which paralyzes the role of applications in embracing the increasing
volumes of the available datasets.

As the memory limitation was the main shortcoming in the existing works, we
investigated parallel approaches that distribute the workload among several sep-
arate memories. One solution that gained traction over the past years is the con-
cept of Resilient Distributed Dataset (RDDs), initially suggested at [18], which
are in-memory data structures. Using RDDs, we are able to perform operations
on the whole dataset stored in a significantly enlarged distributed memory.

Apache Spark2 is an implementation of the concept of RDDs. It allows per-
forming coarse-grained operations over voluminous datasets in a distributed
manner in parallel. It extends earlier efforts in the area such as Hadoop MapRe-
duce.

In this paper, we introduce a software component “DistLODStats” for sta-
tistical evaluation of large RDF datasets, which scales out to clusters of multiple
machines. We extend the approach proposed in [5] for computing 32 different
statistical criteria for RDF datasets. Our contributions can be summarized as
follows:

– We propose an algorithm for computing RDF dataset statistics and imple-
ment it using an efficient framework for large-scale, distributed and in-
memory computations: Apache Spark.

– We perform an analysis of the complexity of the computational steps and the
data exchange between nodes in the cluster.

– We evaluate our approach and demonstrate empirically its superiority over a
previous centralized approach.

– We integrated the approach into the SANSA framework, where it is actively
maintained and re-uses the community infrastructure (mailing list, issues
trackers, website etc.).

– We briefly describe four usage scenarios for DistLODStats.

2 http://spark.apache.org.

http://spark.apache.org
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The paper is structured as follows: Our approach for the computation of RDF
dataset statistics is detailed in Sect. 2 and evaluated in Sect. 3. Related work on
the computation of RDF statistics is discussed in Sect. 5. Finally, we conclude
and suggest planned extensions of our approach in Sect. 6.

2 Approach

In this paper, we adopted the 32 statistical criteria proposed in [5]. In contrast
to [5], we perform the computation in a large-scale distributed environment using
Spark and the concept of RDDs. Instead of processing the input RDF dataset
directly, this approach requires the conversion to an RDD that is composed of
three elements: Subject, Property and Object. We name such an RDD a main
dataset.

The statistical criteria proposed in [5] are formalized as a triple (F,D, P )
consisting of a filter condition F , a derived dataset D and a post processing
operation P . In our approach, we adapt the definition of those elements to be
applicable to RDDs.

Definition 1 (Statistical criterion). A statistical criterion C is a triple C =
(F,D, P ), where:

– F is a SPARQL filter condition.
– D is a derived dataset from the main dataset (RDD of triples) after applying F.
– P is a post-processing filter operating on the data structure D.

F acts as a filter operation, which determines whether a specific criterion is
matched against a triple in the main dataset. D is the result of applying the
criterion on the main dataset. P is an operation applied to D to (optionally)
perform further computational steps. If no extra computation are needed, P
just returns exactly the results from the intermediate dataset D.

2.1 Main Dataset Data Structure

The main dataset is based on an RDD data structure which is a basic building
block of the Spark framework. RDDs are in-memory collections of records that
can be operated in parallel on large clusters. By using RDDs, Spark abstracts
away the differences of the underlying data sources. RDDs during their lifecy-
cle are kept in-memory, which enables efficient reuse of RDDs during several
consequent transformations. Spark provides fault-tolerance by keeping a lineage
information (a Directed Acyclic Graph (DAG) of transformations) for each RDD.
This way any RDD can be reconstructed in case of node failure by tracing back
the lineage. Spark enables full control over the persistence state and partition-
ing of the RDDs in the cluster. Thus, we can further improve computational
efficiency of statistical criteria by planning a suitable storage strategy (i.e. alter-
nating between memory and disk). For example, we can precisely determine
which RDDs will be reused, and manage the degree of parallelism by specifying
how an RDD is partitioned across the available resources.
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Definition 2 (Basic Operations). All the statistical criteria can be repre-
sented in our approach using the following basic operations: map, filter, reduce-
by, and group-by. These operations can be formalized as follows:

– map : I → O, where I is an input RDD and O is an output RDD. Map
transforms each value from an input RDD into another value, following a
specified rule.

– filter : I → O, where I is an input RDD and O is an output RDD, which
contains only the elements that satisfy a condition.

– reduce : I → O, where I is an input RDD of key-value (K,V) pairs and O is
an output RDD of (K, list(V)) pairs.

– group-by : (I, F ) → O, where I is an input RDD of pairs (K, list(V)), F is a
grouping function (e.g., count, avg), and O is an output RDD containing the
values in list(V ) from I aggregated using the grouping function.

2.2 Distributed LODStats Architecture

The computation of statistical criteria is performed as depicted in Fig. 1. Our
approach consists of three steps: (1) saving RDF data in scalable storage, (2)
parsing and mapping the RDF data into the main dataset, and (3) performing
statistical criteria evaluation on the main dataset and generating results.

Fig. 1. RDD lineage of a criterion execution.

Fetching the RDF Data (Step 1): RDF data needs first to be loaded into a
large-scale storage that Spark can efficiently read from. For this purpose, we
use HDFS (Hadoop Distributed File-System)3. HDFS is able to accommodate
any type of data in its raw format, horizontally scale to arbitrary number of
nodes, and replicate data among the cluster nodes for fault tolerance. In such
a distributed environment, Spark adopts different data locality strategies to try
to perform computations as close to the needed data as possible in HDFS and
thus avoid data transfer overhead.
3 https://hadoop.apache.org/docs/r1.2.1/hdfs design.html.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Parsing and Mapping RDF into the Main Dataset (Step 2): In the course of
Spark execution, data is parsed into triples and loaded into an RDD of the
following format: Triple<Subj,Pred,Obj> (by using the Spark map transforma-
tion).

Statistical Criteria Evaluation (Step 3): For each criterion, Spark generates an
execution plan, which is composed of one or more of the following Spark trans-
formations: map, filter, reduce and group-by.

2.3 Algorithm

The DistLODStats algorithm (see Algorithm 1) constructs the main dataset from
an RDF file (line 1). Afterwards, the algorithm iterates over the criteria defined
inside the DistLODStats framework and evaluates them (lines 4, 6 and 8).

To define a statistical criterion inside the DistLODStats framework, one must
specify filter, action, and postProc methods. The evaluation of the criterion then
starts first by the filter method (line 4) that is used to apply the rule filters of
the criterion (Rule Filter in Table 1). Applied on a main dataset, this latter will
return a new RDD with a subset of the triples. Next, the action method is used
to apply the criterion’s rule action (Rule Action in Table 1). Applied on the
filtered RDD, this either computes statistics directly or reorganizes the RDD so
statistics can be computed in the next step. At the end, the postProc method
is used as an optional operation to perform further statistical computations
(e.g. average after count or sort).

Algorithm 1. DistLODStats.
input : RDF : an RDF dataset, C: a list of criterion.

1 RDD mainDataset = RDF.toRDD < Triple > ()
2 mainDataset.cache()
3 foreach c ∈ C do
4 triples ← c.filter(mainDataset)
5 triples.cache()
6 triples ← c.action(triples)
7 if c.hasPostProc then
8 triples ← c.postProc(triples)

In our work, we make use of Spark caching techniques. Basically, if an RDD is
constructed from a data source e.g. file, or through a lineage of RDDs, and then
cached, there is no need to construct the RDD again the next time it is needed.
We have used two different approaches for caching: (1) caching the main dataset
entirely (line 2), and (2) caching a derived RDD after applying the criteria filter
on the main dataset (line 5). In the first approach, the RDD is constructed from
the RDF source during the first criteria computation, so the next criteria do not
need to fetch it again. In the second approach, the RDD resulting from executing
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the filter of one criterion is cached and used by any other criterion sharing the
same filter pattern.

2.4 Complexity Analysis

The performance of criteria computation depends on two factors mainly:

– Data Shuffling and Filtering. In general, the computation can be expen-
sive if there is data movement involved during the distributed execution,
which is also known as shuffling. This generally happens when there is a data
reduction (in the map-reduce sense). This entails cases like grouping together
similar data or applying aggregation functions for SUM, AVG, COUNT, etc.
Another factor influencing the performance of criteria computation are fil-
ters. The more data is filtered in early stages, the less processing is required
in subsequent steps.

– Data Scanning. To execute the criterion filter on the same data, data is
scanned only once for all criteria. However if data changes state, for example
is mapped to another form with new columns added, then another scan of
the new state is needed. Finally, if data is shuffled across cluster nodes, then
a new scan is needed as well.

Per-criterion Complexity Analysis. Based on the two previous factors, we
performed a complexity analysis of each statistical criterion. The results are
reported in Table 2. We deem the complexity is mostly linear corresponding to
cases where only one or limited number of scans is required. However there are
situations where the complexity can increase when there are iterative executions,
like the case of data sorting or graph-based computations (e.g. finding cycles or
getting the path between two edges).

Below we give an overview of complexity analysis for our most operators used
through our approach.

The complexity of map() and filter() itself is linear with respect to the
number of input triples. The overall complexity depends on the functions passed
to them. Consider an RDD as a single data structure on memory, any other
operations (such as map and filter) are linear, or O(n). The subsequent step is
to split this RDD between s nodes, the complexity on each node then becomes
O(n/s). Let be f a function with complexity O(f), then its complexity will be
O(n/s ∗O(f)). As evident from the formula O(n/s ∗O(f)), the runtime increases
linearly when the size of RDD increases and decreases linearly with the number
of nodes in the cluster in case of a function f with with O(f) = O(1).

The complexity of the sortBy operation according to Spark4 is a sampled
O(n), which means only the unique sample keys m (with m ≤ n) are sorted and
lead to a complexity of O(m ∗ log(m)) plus the ranges of key sets. Afterwords,
the data is shuffled around in O(n) which is costly as sorting needs to be applied
internally for the range of keys collected on a given partition p, i.e. O(p ∗ log(p))
time is required.
4 https://github.com/apache/spark/blob/d5b1d5fc80153571c308130833d0c0774de

62c92/core/src/main/scala/org/apache/spark/Partitioner.scala#L101.

https://github.com/apache/spark/blob/d5b1d5fc80153571c308130833d0c0774de62c92/core/src/main/scala/org/apache/spark/Partitioner.scala#L101
https://github.com/apache/spark/blob/d5b1d5fc80153571c308130833d0c0774de62c92/core/src/main/scala/org/apache/spark/Partitioner.scala#L101
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Table 1. Definition of Spark rules (using Scala notation) per criterion.
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Table 2. Complexity and data shuffling breakdown by statistical criterion. Notation
conventions: n = number of triples; V = number of vertices; E = number of edges.

Criterion Runtime complexity Data shuffling and data scanning

(1, 3) O(n) Data is filtered locally and returned, i.e. no data exchange is

needed

(2, 5) As sorting is required

to retrieve the top

100 results, i.e. the

complexity depends

on the sorting

algorithm used

This operation can be implemented in a map-reduce fashion:

classes initially are distributed across the cluster, so calculating

their counts requires data to be shuffled and then reduced. The

sorting in post-processing requires moving the data. Currently,

data is sorted in each node and the union of the datasets is

subsequently sorted as well

(6, 7, 8, 9) O(n) Following a map-reduce approach, the data is first mapped to

<subject,property> pairs and then reduced by subject, so data

needs to be shuffled prior to the grouping. De-duplication

(distinct) is automatically achieved by the reduce function

(4, 12) O(V+E) The best representation of this criterion is a graph where data is

already connected, and only linear traversal is required so no data

transfer is needed

(10, 11, 20,

21)

O(n) Following a map-reduce approach, data is first mapped to

<subject,1> and then reduced by subject counting the 1s, so data

needs to be shuffled prior to the grouping

(13, 14) O(n) The count is performed locally and the individual counts are

summed up for the cluster, i.e. no data movement is needed

(15) O(n) Counting of entities with mentioned s, p and o is done in parallel,

so the overall count uses individual counts and sums them. Hence,

no data transfer is needed

(16) O(n) This is similar to 15, but instead of counting, just returning the

triples, so data is saved directly after checking isURI and saved

back, i.e. no data is moved

(17, 18, 19,

24, 25, 26,

27, 30, 31,

32)

O(n) Data is filtered and then counted in each node, the overall count

can be obtained by summing up individual counts, so no data

movement

(23, 23) O(n) The computation requires to project out the objects only and map

them to the length of themselves, then the average is computed by

summing up the length dividing by the size of each map. The AVG

count is done in parallel in each node and then the AVG of all

AVGs is a matter of getting single values from each node, so no

data movement is needed

(28) O(n) Obtaining the maximum per property requires also reducing data

distributed in the cluster, so data movement needed

(29) O(n) The data here is also reduced by property, so the sum and the

count, thus the average, can happen in the same time. Either way,

data needs to be moved across the cluster

2.5 Implementation

DistLODStats comprises three main phases depicted in Fig. 2 and explained
previously. The output of the Computing phase will be the statistical results
represented in a human-readable format e.g. VoID, or row data. We expressed
the three phases of the 32 criteria using the basic operations defined in
Definition 2. Next, those have been mapped to Spark transformations and actions
in Table 1, where: map is mapped directly to Spark Map(), reduce is mapped to
groupByKey(), and group-by is mapped to reduceByKey(). Exceptions of this
general strategy were done for the implementation of the post processing steps
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Fig. 2. Overview of DistLODStats’s abstract architecture.

of Criteria 4 and 12, where we use a Spark GraphX5, which is more suitable for
this particular case of graph-oriented criterion computation.

Furthermore, we provide a Docker image of the system6 available under
Apache License 2.0, integrated within the BDE platform7 - an open source Big
Data Processing Platform allowing users to install numerous big data processing
tools and frameworks and create working data flow applications.

We implemented DistLODStats using Spark-2.2.0, Scala 2.11.11 and Java
8. DistLODStats has meanwhile been integrated into SANSA [6,11], an open
source8 data flow processing engine for performing distributed computation over
large-scale RDF datasets. It provides data distribution, communication, and
fault tolerance for manipulating large RDF graphs and applying machine learn-
ing algorithms on the data at scale. Via this integration, DistLODStats can also
leverage the developer and user community as well as infrastructure behind the
SANSA project. This also ensure the sustainability of DistLODStats given that
SANSA is backed by several grants until at least 2021.

3 Evaluation

The aim of our evaluation is to see how well our approach can perform against
non-distributed approaches as well as analysing the scalability of the distributed
approach. In particular, we addressed the following questions: (Q1): How does
the runtime of the algorithm change when more nodes in the cluster are added?
(Q2): How does the algorithm scale to larger datasets? (Q3): How does the
algorithm scale to a larger number of datasets?

In the following, we present our experimental setup including the datasets
used. Thereafter, we give an overview of our results, which we subsequently
discuss in the final part of this section.
5 https://spark.apache.org/docs/latest/graphx-programming-guide.html.
6 https://github.com/SANSA-Stack/Spark-RDF-Statistics.
7 https://github.com/big-data-europe.
8 https://github.com/SANSA-Stack.

https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://github.com/SANSA-Stack/Spark-RDF-Statistics
https://github.com/big-data-europe
https://github.com/SANSA-Stack
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3.1 Experimental Setup

We used one synthetic and two real world datasets for our experiments:

1. We chose the geospatial dataset LinkedGeoData [16] which offers a spatial
RDF knowledge base derived from OpenStreetMap.

2. As a cross domain dataset, we selected DBpedia [10] (v 3.9). DBpedia is a
knowledge base with a large ontology.

3. As a synthetic dataset, we chose to use the Berlin SPARQL Benchmark
(BSBM) [2]. It is based on an e-commerce use case which is built around
a set of products that are offered by different vendors. The benchmark pro-
vides a data generator, which can be used to create sets of connected triples
of any particular size.

Properties of these datasets are given in Table 3.

Table 3. Dataset summary information (nt format).

−→ DBpedia BSBM

LinkedGeoData en de fr 2GB 20GB 200GB

#nr. of triples 1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057

Size (GB) 191.17 114.4 48.6 49.77 2 20 200

For the evaluation, all data is stored on the same HDFS cluster using Hadoop
2.8.0. All experiments were carried out on a 6 nodes cluster (1 master, 5 workers):
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz (32 Cores), 128 GB RAM, 12 TB
SATA RAID-5. The experiments on a local mode are all performed on a single
instance of the cluster. We ran two centralized versions of LODStats (explained
below at Sect. 3.2) for comparison. The machines were connected via a Gigabit
network. All experiments were executed three times and the average value is
reported.

3.2 Results

We evaluate our approach using the above datasets to compare it against the
original LODStats. We carried out two sets of experiments. First, we evaluate
the execution time of our distributed approach against the original approach.
Second, we evaluate the horizontal scalability via increasing nodes (machines) in
the cluster. Results of the experiments are presented in Table 4, Figs. 3, 4 and 5.

Distributed Processing on Large-Scale Datasets
To address Q1, we started our experiments by evaluating the speedup gained by
adopting a distributed implementation of LODStats criteria using our approach,
and compare it against the original centralized version. We run the experiments
on four datasets (DBpediaen, DBpediade, DBpediafr, and LinkedGeoData) in
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Table 4. Distributed Processing on Large-Scale Datasets.

Runtime (h) (mean/std)

−→ LODStats DistLODStats

(a) files (b) bigfile (c) local (d) cluster (e) speedup ratio

LinkedGeoData n/a n/a 36.65/0.13 4.37/0.15 7.4x

Men
DBpedia 24.63/0.57 fail 25.34/0.11 2.97/0.08 7.6x

Mde
DBpedia n/a n/a 10.34/0.06 1.2/0.0 7.3x

Mfr
DBpedia n/a n/a 10.49/0.09 1.27/0.04 7.3x

a local environment on a single instance with two configurations: (1) files of the
dataset are considered separately, and (2) one big file–all files concatenated.

Table 4 shows the performance of two algorithms applied to the four datasets.
The column LODStats (a) reports on the performance of LODStats on files
separately (considering each file as a sequence of execution), the next columns
LODStats(b) reports on the performance of LODStats using a single big file
by concatenating each file, and the last columns reports on the performance of
DistLODStats on the same case as previously i.e. the performance for one big
dataset in local mode (c) and cluster mode (d). We observe that the execu-
tion in DistLODStats(c),(d) finishes with all the datasets (see Fig. 3). However,
for LODStats(a),(b) the execution often fails at different stages of the execu-
tion. In particular, n/a indicates parser exceptions and fail out of memory
exceptions. The only case where the execution finishes and actually slightly
outperforms DistLODStats(c) on a single node is executing LODStats on the
dataset DBpediaen split into files (25.34 h for DistLODStats(c) vs 24.63 h in
LODStats(a)). This is because the DistLODStats(c) considers the input dataset
as a big file instead of evaluation it on each file separately. LODStats streams
the criteria one by one, so having a large dataset streamed that way would lead
to very high processing times. However, with small data as input, the processing
can finish in short amount of time, but the results can be very inaccurate.

Fig. 3. Speedup performance evalua-
tion of DistLODStats.

Fig. 4. Sizeup performance evaluation
of DistLODStats.
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Figure 3 shows the speedup performance evaluation for large-scale RDF
Datasets for DistLODStats on local mode and cluster mode, respectively. All
results illustrate consistent improvement for each dataset when running on a
cluster. The maximum speedup is 7.6x and the geometric mean of the speedup
is 7.4x.

For example, on DBpediaen, the time on cluster mode is about 2.97 h which
is 7.6 times faster than evaluating DistLODStats on local mode (about 25.34 h).
The reason why the time spent on local mode extremely decreases is that the
size of the working directory of worker processes is too large and Spark uses
threads for distributing the tasks.

Scalability
Sizeup Scalability. To measure the performance of size-up i.e. scalability of our
approach, we run experiments on three different sizes. This analysis keeps the
number of nodes in a cluster constant, we fix the number of workers (nodes) to
5 and grow the size of datasets to measure whether a given algorithm can deal
with larger datasets. Since real-world datasets are considered to be unique in the
size and also on other aspects e.g. number of unique terms, we chose the BSBM
benchmark tool to generate artificial datasets of different sizes. We started by
generating a dataset of 2 GB. Then we iteratively increased the size of datasets
by one order of magnitude.

On each dataset, we ran the distributed algorithm and the runtime is reported
on Fig. 4. The x-axis is a generated BSBM dataset per each order of 10x
magnitude.

By comparing the runtime (see Fig. 4), we note that the execution time cost
grows linearly and is near-constant when the size of the dataset increases. As
expected, it stays near-constant as long as the data fits in memory. This demon-
strates one of the advantages of utilizing an in-memory approach in performing
the statistics computation. The overall time spent in data read/write and net-
work communication found in disk-based approaches is no present in distributed
in-memory computing. The performance only starts to degrade when substan-
tial amounts of data need to be written to disk due to memory overflows. The
results show scalability of our algorithm in context of sizeup, which answers
question Q2.

Node Scalability. In order to measure node scalability, we use variations of the
number of the workers on our cluster. The number of workers varies from 1, 2,
3 and 4 to 5.

Let TN be the time required to complete the task on N workers. The speedup
S is the ratio S = TL

TN
, where TL is the execution time of the algorithm on local

mode. Efficiency measures the processing power being used (i.e speedup per
worker). It is defined as the time to run the algorithm on N workers compared
to the time to run algorithm on local mode: E = S

N = TL

NTN
.

Figure 5 shows the speedup for BSBM50GB . We can see that as the number
of workers increases, the execution time cost is super-linear. As depicted in Fig. 6,
the speedup performance trend is consistent as the number of workers increases.
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Fig. 5. Scalability performance evalua-
tion on DistLODStats.

Fig. 6. Speedup ratio and efficiency of
DistLODStats.

In contrast, as the number of workers was increased from 1 to 5, efficiency
increased only up to the 4th worker for BSBM50GB dataset. This implies that
the tasks generated from the given dataset were covered with almost 4 nodes.
The results imply that DistLODStats can achieve near linear or even super linear
scalability in performance, which answers question Q3.

Breakdown by Criterion
Now we analyze the overall runtime of criteria execution. Fig. 7 reports on the
runtime of each criterion on both BSBM20GB and BSBM200GB datasets.

Fig. 7. Overall breakdown by criterion analysis (log scale).

Discussion. DistLODStats consists of 32 predefined criteria most of which have
a runtime complexity of O(n) where n is the number of input triples. The break-
down for BSBM with two instances is shown in Fig. 7. The results obtained
confirm to a large extent the pre-analysis made in Subsect. 2.4. The execution
is longer when there is data movement in the cluster compared to when data is
processed without movement e.g. Criterion 2, 3 and 4. There are some criteria
that are quite efficient to compute even with data movement e.g. 22, 23. This
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is because data is largely filtered before the movement. Criterion 2 and 28 are
the most expensive ones in terms of time of execution. This is most probably
because of the sorting and maximum algorithm used by Spark. Criteria 20 and
21 are particularly expensive because of the extra overhead caused by extracting
the data type and language for each particular object of type Literal. Criteria
like 14 and 15 do not require movement of data, but yet are inefficient in execu-
tion. This is because the data is not filtered previously. The last three criteria do
include data movement but are among the most efficient ones. This is because
the low number of namespaces the chosen datasets have.

Overall, the evaluation study conducted demonstrates that parallel and dis-
tributed computation of the different statistical values is scalable, i.e. the exe-
cution finishes in reasonable time relative to the high volume of datasets.

4 Use Cases

DistLODStats is a generic tool for horizontally scalable statistics evaluation. We
are aware of the following major users of the tool:

Comprehensive Statistics – LODStats. LODStats9 is a project, which has
crawled RDF data from metadata portals for the past seven years. It interacts
with the CKAN dataset metadata registry to obtain a comprehensive picture
of the current state of the Data Web. The drawback of the previous engine for
LODStats is its inability to horizontally scale out, which naturally limited its
scope to small and medium size datasets. For this reason, statistical criteria for
several large-scale datasets were not reflected in the project website. Meanwhile,
DistLODStats is used as underlying engine overcoming the previous limitations
and generating statistical descriptions, including e.g. VoID, for large parts of the
Linked Open Data Cloud.

Big Data Platform – BDE. Big Data Europe (BDE)10 [1] is an open source
big data processing platform allowing users to deploy Big Data processing tools
and frameworks. Those tools and frameworks usually generate large amounts of
log data. DistLODStats is used for computing statistics over those logs within the
BDE platform. BDE uses the Mu Swarm Logger service11 for detecting docker
events and convert their representation to RDF. In order to generate visualisa-
tions of log statistics, BDE then calls DistLODStats from SANSA-Notebooks [6].

Blockchain – Alethio Use Case. Alethio is building an Ethereum analyt-
ics platform that strives to provide transparency over the transaction pool of
the Ethereum p2p network. Their 5 billion triple data set contains large scale
blockchain transaction data modelled as RDF according to the structure of the
Ethereum ontology12. Alethio is using SANSA in general and DistLODStats

9 http://lodstats.aksw.org/.
10 https://github.com/big-data-europe.
11 https://github.com/big-data-europe/mu-swarm-logger-service.
12 https://github.com/ConsenSys/EthOn.

http://lodstats.aksw.org/
https://github.com/big-data-europe
https://github.com/big-data-europe/mu-swarm-logger-service
https://github.com/ConsenSys/EthOn
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specifically in order to perform large-scale batch analytics, e.g. computing the
asset turnover for sets of accounts, computing attack pattern frequencies and
Opcode usage statistics. DistLODStats was run on a 100 node cluster with 400
cores to compute those statistics.

LOD Summaries – ABSTAT. ABSTAT13[14] is a framework that aims to
provide a better understanding of linked data sets. It implements an ontology-
driven linked data summarization approach. DistLODStats is used for data set
summarisation of large-scale RDF datasets in this context.

5 Related Work

In this section, we provide an overview of related work regarding RDF dataset
statistics calculation. To the best of our knowledge, all but one existing
approaches use small to medium scale datasets and do not horizontally scale. A
dataset is large-scale w.r.t. a particular task in the scope of this article if the
main memory on commodity hardware is insufficient to perform the task (with-
out swapping to disk). We mention here, for example RDFPro [3], which offers
a suite of stream-oriented, highly optimized processors for common tasks, such
as data filtering, RDFS inference, smushing, as well as statistics extraction. The
second related approach we are aware of is Aether [12], which is an application
for generating, viewing and comparing extended VoID statistical descriptions of
RDF datasets. The tool is useful, for example, in getting to know a newly encoun-
tered dataset, in comparing the different versions of a dataset, and in detecting
outliers and errors. Luzzu [4] is a quality assessment framework for linked data.
Its Quality Metric Language (LQML), is a domain specific language (DSL) that
enables knowledge engineers to declaratively define quality metrics whose defi-
nitions can be understood more easily. LQML offers notations, abstractions and
expressive power, focusing on the representation of quality metrics. However,
only one work we came across that provided a distributed framework for RDF
statistics computation: LODOP [8]. LODOP adopts a MapReduce approach
for computing, optimizing, and benchmarking data profiling techniques. It uses
Apache Pig as the underlying computation engine (Hadoop-based). LODOP
implements 15 data profiling tasks comparing to 32 in our work. Because of the
usage of MapReduce, the framework has a significant drawback: materialization
of intermediate results between Map and Reduce and between two subsequent
jobs is done on disk. DistLODStats does not use the disk-based MapReduce
framework (Hadoop), but rather bases its computation mainly in-memory, so
runtime performance is presumably better [15]. Unfortunately, we were unable
to run LODOP for comparison. This is due to technical problems encountered,
despite the very significant effort we devoted to deploy and run it. To the best
of our knowledge, DistLODStats is the first software component for in-memory
distributed computation of RDF dataset statistics.

13 http://abstat.disco.unimib.it/.

http://abstat.disco.unimib.it/
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6 Conclusions and Future Work

For obtaining an overview over the Web of Data as well as evaluating the quality
of individual datasets, it is important to gather statistical information describing
characteristics of the internal structure of datasets. However, this process is both
data-intensive and computing-intensive and it is a challenge to develop fast and
efficient algorithms that can handle large scale RDF datasets.

In this paper, we presented DistLODStats, a novel software component for
distributed in-memory computation of RDF Datasets statistics implemented
using the Spark framework. DistLODStats is maintained and has an active com-
munity due to its integration in SANSA. Our definition of statistical criteria
provides a framework reducing the implementation effort required for adding
further statistical criteria. We showed that our approach improves upon a pre-
vious centralized approach we compare against. Since Spark RDDs are designed
to scale horizontally, cluster sizes can be adapted to dataset sizes accordingly.
Although we achieved reasonable results in terms of scalability, we plan to fur-
ther improve time efficiency by persisting the data to an even higher extend
more in memory and perform load balancing.
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