Skip to main content

Basic science of ligament healing

  • Chapter
The Knee Joint

Abstract

Ligaments function as short bands of fibrous connective tissue that connect bone or supporting soft tissue structures. The organization of the ligament is hierarchical. Ligaments are composed of bundles of type I collagen fiber, which make approximately 70% of the dry weight of the tissue (1). Small amounts of elastin are present, with rows of fibroblasts within parallel bundles of extracellular matrix. In the hierarchical structure of the ligament, the collagen matrix comprises a series of fibrils, which are then grouped into fibers forming a subfascicular unit (Fig. 1) (2). The subfascicular units are surrounded by a thin layer of connective tissue. Multiple subfascicular units are bound together to form a fasciculus that can range from microns to millimeters in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Amiel D, Frank C, Harwood F, et al. (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265

    Article  PubMed  CAS  Google Scholar 

  2. Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res6(1):11–23

    Article  PubMed  CAS  Google Scholar 

  3. Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20

    PubMed  CAS  Google Scholar 

  4. Arnoczky SP, Rubin RM, Marshall JL (1979) Microvasculature of the cruciate ligaments and its response to injury. An experimental study in dogs. J Bone Joint Surg Am 61(8):1221–1229

    PubMed  CAS  Google Scholar 

  5. Amiel D, Abel MF, Kleiner JB, et al. (1986) Synovial fluid nutrient delivery in the diathrial joint: an analysis of rabbit knee ligaments. J Orthop Res 4(1):90–95

    Article  PubMed  CAS  Google Scholar 

  6. Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am 66(7):1072–1076

    PubMed  CAS  Google Scholar 

  7. Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182(1):16–32

    Article  PubMed  CAS  Google Scholar 

  8. Woo SL, Gomez MA, Seguchi Y, et al. (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1(1):22–29

    Article  PubMed  CAS  Google Scholar 

  9. Woo SL, Newton PO, MacKenna DA, Lyon RM (1992) A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. J Biomech 25(4):377–386

    Article  PubMed  CAS  Google Scholar 

  10. Murphy PG, Loitz BJ, Frank CB, Hart DA (1993) Influence of exogenous growth factors on the expression of plasminogen activators by explants of normal and healing rabbit ligaments. Biochem Cell Biol 71:522–529

    Article  PubMed  CAS  Google Scholar 

  11. Murphy PG, Loitz BJ, Frank CB, Hart DA (1994) Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochem Cell Biol 72:403–409

    Article  PubMed  CAS  Google Scholar 

  12. Woo SL-Y, Suh JK, Parsons IM, et al. (1998) Biological intervention in ligament healing effect of growth factors. Sports Med Arthrosc Rev 6:74–82

    Article  Google Scholar 

  13. Frank CB, Bray RC, Hart DA, et al. (1994) Soft Tissue Healing. In: Fu F, Harner CD, Vince KG. editors. Knee surgery. 1 ed. Baltimore: Williams and Wilkins: 189–229

    Google Scholar 

  14. Abramowitch SD, Papageorgiou CD, Debski RE, et al. (2003) A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg Sports Traumatol Arthrosc 11(3):155–162

    PubMed  Google Scholar 

  15. Woo SL, Gomez MA, Inoue M, Akeson WH (1987) New experimental procedures to evaluate the biomechanical properties of healing canine medial collateral ligaments. J Orthop Res 5(3):425–432

    Article  PubMed  CAS  Google Scholar 

  16. Gomez MA, Woo SL, Inoue M, et al. (1989) Medical collateral ligament healing subsequent to different treatment regimens. J Appl Physiol 66(1):245–252

    PubMed  CAS  Google Scholar 

  17. Inoue M, Woo SL, Gomez MA, et al. (1990) Effects of surgical treatment and immobilization on the healing of the medial collateral ligament: a long-term multidisciplinary study. Connect Tissue Res25(1):13–26

    Article  PubMed  CAS  Google Scholar 

  18. Weiss JA, Woo SL, Ohland KJ, et al. (1991) Evaluation of a new injury model to study medial collateral ligament healing: primary repair versus nonoperative treatment. J Orthop Res 9(4):516–528

    Article  PubMed  CAS  Google Scholar 

  19. Woo SL, Inoue M, McGurk-Burleson E, Gomez MA (1987) Treatment of the medial collateral ligament injury. II: Structure and function of canine knees in response to differing treatment regimens. Am J Sports Med 15(1):22–29

    Article  PubMed  CAS  Google Scholar 

  20. Derscheid GL, Garrick JG (1981) Medial collateral ligament injuries in football. Nonoperative management of grade I and grade II sprains. Am J Sports Med 9(6):365–368

    Article  PubMed  CAS  Google Scholar 

  21. Indelicato PA, Hermansdorfer J, Huegel M (1990) Nonoperative management of complete tears of the medial collateral ligament of the knee in intercollegiate football players. Clin Orthop Relat Res 256:174–177

    PubMed  Google Scholar 

  22. Jones RE, Henley MB, Francis P (1986) Nonoperative management of isolated grade III collateral ligament injury in high school football players. Clin Orthop Relat Res 213:137–140

    PubMed  Google Scholar 

  23. O’Donoghue DH, Rockwood CA Jr, Frank GR, et al. (1966) Repair of the anterior cruciate ligament in dogs. J Bone Joint Surg Am48(3):503–519

    CAS  Google Scholar 

  24. Amiel D, Nagineni CN, Choi SH, Lee J (1995) Intrinsic properties of ACL and MCL cells and their responses to growth factors. Med Sci Sports Exerc 27(6):844–851

    PubMed  CAS  Google Scholar 

  25. Geiger MH, Green MH, Monosov A, et al. (1994) An in vitro assay of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cell migration. Connect Tissue Res 30(3):215–224

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi K, Healey RM, Sah RL, et al. (2000) Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng 6(1):29–38

    Article  PubMed  CAS  Google Scholar 

  27. Nagineni CN, Amiel D, Green MH, et al. (1992) Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res10(4):465–475

    Article  PubMed  CAS  Google Scholar 

  28. Kondo E, Yasuda K, Yamanaka M, et al. (2003) Biomechanical evaluation of a newly devised model for the elongation-type anterior cruciate ligament injury with partial laceration and permanent elongation. Clin Biomech (Bristol, Avon) 18(10):942–949

    Article  Google Scholar 

  29. Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224

    PubMed  CAS  Google Scholar 

  30. Amiel D, Kleiner JB, Akeson WH (1986) The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 14(6):449–462

    Article  PubMed  CAS  Google Scholar 

  31. Ballock RT, Woo SL, Lyon RM, et al. (1989) Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long-term histologic and biomechanical study. J Orthop Res 7(4):474–485

    Article  PubMed  CAS  Google Scholar 

  32. Grana WA, Egle DM, Mahnken R, Goodhart CW (1994) An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 22(3):344–351

    Article  PubMed  CAS  Google Scholar 

  33. Butler DL, Grood ES, Noyes FR, et al. (1989) Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time. J Orthop Res 7(1):68–79

    Article  PubMed  CAS  Google Scholar 

  34. Amiel D, Kleiner JB, Roux RD, et al. (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172

    Article  PubMed  CAS  Google Scholar 

  35. Ben-Av P, Crofford LJ, Wilder RL, Hla T (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372(1):83–87

    Article  PubMed  CAS  Google Scholar 

  36. Yoshikawa T, Tohyama H, Enomoto H, et al. (2006) Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(9):804–810

    Article  PubMed  CAS  Google Scholar 

  37. Petersen W, Unterhauser F, Pufe T, et al. (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg123(4):168–174

    PubMed  Google Scholar 

  38. Johnson LL (1993) The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study. Arthroscopy 9(2):131–142

    Article  PubMed  CAS  Google Scholar 

  39. Rougraff BT, Shelbourne KD (1999) Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 7(1):9–14

    Article  PubMed  CAS  Google Scholar 

  40. Yamagishi T, Fujii K, Roppongi S, Hatsuumi H (1998) Blood flow measurement in reconstructed anterior cruciate ligaments using laser Doppler flowmetry. Knee Surg Sports Traumatol Arthrosc 6(3):160–164

    Article  PubMed  CAS  Google Scholar 

  41. Shino K, Inoue M, Horibe S, et al. (1991) Surface blood fl ow and histology of human anterior cruciate ligament allografts. Arthroscopy7(2):171–176

    Article  PubMed  CAS  Google Scholar 

  42. Delay BS, McGrath BE, Mindell ER (2002) Observations on a retrieved patellar tendon autograft used to reconstruct the anterior cruciate ligament. A case report. J Bone Joint Surg Am 84-A(8):1433–1438

    PubMed  Google Scholar 

  43. Rodeo SA, Arnoczky SP, Torzilli PA, et al. (1993) Tendonhealing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75(12):1795–1803

    PubMed  CAS  Google Scholar 

  44. Goradia VK, Rochat MC, Grana WA, et al. (2000) Tendonto-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J Knee Surg 13(3):143–151

    PubMed  CAS  Google Scholar 

  45. Tomita F, Yasuda K, Mikami S, et al. (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17(5):461–476

    Article  PubMed  CAS  Google Scholar 

  46. Pinczewski LA, Clingeleffer AJ, Otto DD, et al. (1997) Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 13(5):641–643

    Article  PubMed  CAS  Google Scholar 

  47. Robert H, Es-Sayeh J, Heymann D, et al. (2003) Hamstring insertion site healing after anterior cruciate ligament reconstruction in patients with symptomatic hardware or repeat rupture: a histologic study in 12 patients. Arthroscopy 19(9):948–954

    Article  PubMed  Google Scholar 

  48. Nebelung W, Becker R, Urbach D, et al. (2003) Histological findings of tendon-bone healing following anterior cruciate ligament reconstruction with hamstring grafts. Arch Orthop Trauma Surg 123(4):158–163

    PubMed  CAS  Google Scholar 

  49. Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8(1):26–31

    Article  PubMed  CAS  Google Scholar 

  50. Ishibashi Y, Toh S, Okamura Y, et al. (2001) Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Am J Sports Med 29(4):473–479

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Tohyama, H., Yasuda, K. (2012). Basic science of ligament healing. In: The Knee Joint. Springer, Paris. https://doi.org/10.1007/978-2-287-99353-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99353-4_5

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99352-7

  • Online ISBN: 978-2-287-99353-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics