Skip to main content

Laser Welding

  • Chapter
Laser Material Processing

Abstract

The focused laser beam is one of the highest power density sources available to industry today. It is similar in power density to an electron beam. Together these two processes represent part of the new technology of high-energy-density processing. Table 4.1 compares the power density of various welding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Twistlas® is a registered trademark of TRUMPF GmbH \( + \) Co. KG, Johann-Maus-Str. 2, 71254 Ditzingen, Germany. http://www.trumpf.com

  2. 2.

    Bakelite® is a registered trademark of Bakelite AG, Gennaer Strasse 2–4, 5862 Iserlohn, Germany.

  3. 3.

    Clearweld® is a registered trademark of Gentex Corporation. http://www.clearweld.com

References

  1. Beyer E, Behler K, Herziger G (1990) Influence of laser beam polarisation in welding. In: Industrial laser annual handbook 1990. PennWell Books, Tulsa, pp 157–160

    Google Scholar 

  2. Arata Y (1987) Challenge of laser advanced materials processing. In: Proceedings of the conference on laser advanced material processing (LAMP’87), Osaka, May 1987. High Temperature Society of Japan, pp 3–11

    Google Scholar 

  3. Matsunawa A (2002) Science of laser welding-mechanisms of keyhole and pool dynamics. In: ICALEO 2002 proceedings, Phoenix, October 2002. LIA, Orlando, paper 101

    Google Scholar 

  4. Greses J, Barlow CY, Steen WM, Hilton PA (2001) Spectroscopic studies of plume/plasma in different gas environments. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 808

    Google Scholar 

  5. Greses J, Hilton PA, Barlow CY, Steen WM (2002) Plume attenuation under high power Nd:YAG laser welding. In: ICALEO 2002 proceedings, Phoenix, October 2002. LIA, Orlando, paper 808

    Google Scholar 

  6. Mazumder J (1983) Laser welding. In: Bass M (ed) Laser material processing. North-Holland, Amsterdam, pp 113–200

    Chapter  Google Scholar 

  7. PennWell Books (1990) Industrial laser annual handbook 1990. PennWell Books, Tulsa, pp 7–15

    Google Scholar 

  8. Kugler T, Naeem M (2002) Material processing with super modulation. In: ICALEO 2002 proceedings, Phoenix, October 2002. LIA, Orlando, paper 506

    Google Scholar 

  9. Holtz R (2002) Optimized laser applications with lamp pumped pulsed Nd:YAG lasers. In: ICALEO 2002 proceedings, Phoenix, October 2002. LIA, Orlando, paper M409

    Google Scholar 

  10. Katayama S, Wu Y, Matsunawa A (2001) Laser weldability of Zn coated steels. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper P520

    Google Scholar 

  11. Tsukamoto S, Kawaguchi I, Arakane G, Honda H (2001) Suppression of porosity using pulse modulation of laser power in 20 kW CO2 laser welding. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 1702

    Google Scholar 

  12. LASAG AG (1997) LASAG KLS brochure LASAG AG Switzerland (Headquarters): C.F.L. Lohnerstrasse 24, 3602 Thun, Switzerland

    Google Scholar 

  13. Popov S (2006) IPG Laser GmbH fibre lasers – driving material processing markets. In: Proceedings of AILU workshop on fibre lasers – future of laser material processing, Cranfield, 8 March 2006

    Google Scholar 

  14. Lewis S, Naeem M (2006) 100W CW fibre laser vs pulsed Nd:YAG for micro joining. In: Proceedings of AILU workshop on fibre lasers – future of laser material processing, Cranfield, 8 March 2006

    Google Scholar 

  15. Duley WW(1996) UV lasers affects and applications in material science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Schlessinger L, Wright J (1979) Inverse-bremsstrahlung absorption rate in an intense laser field. Phys Rev A Gen Phys 20:1934–1945

    Article  Google Scholar 

  17. Raizer YP (1965) Breakdown and heating of gases with a laser light pulse. Sov Phys JETP 21:1009

    Google Scholar 

  18. Ducharme R, Kapadia PD, Dowden JM, Hilton P, Riches S, Jones IA (1997) An analysis of the laser material interaction in the welding of steel using a CW CO laser. In: ICALEO’96 proceedings, October–November 1996. LIA, Orlando, pp D10–D20

    Google Scholar 

  19. Matsunawa A (1982) Role of surface tension in fusion welding, part I. J Weld Res Inst 11(2):145–154

    Google Scholar 

  20. Matsunawa A (1983) Role of surface tension in fusion welding, part II. J Weld Res Inst 12(1):123–132

    Google Scholar 

  21. Matsunawa A (1984) Role of surface tension in fusion welding, part III. J Weld Res Inst 13(1):147–156

    Google Scholar 

  22. Albright CE, Chiang S (1988) High speed laser welding discontinuities. In: ICALEO’88 proceedings, Santa Clara, October–November 1988. Springer, Berlin/IFS, Kempston, pp 207–213

    Google Scholar 

  23. Wilgoss RA, Megaw JHPC, Clarke JN (1979) Assessing the laser for power plant welding. Weld Met Fabr Mar 117

    Google Scholar 

  24. Seaman FD (1977) Role of shielding gas in high power CO2 CW laser welding. SME technical paper no MR77-982. Society of Manufacturing Engineering, Dearborn

    Google Scholar 

  25. Sepold G, Rothe R, Teske K (1987) Laser beam pressure welding – a new technique. In: Proceedings of the conference on laser advanced material processing LAMP’87, Osaka, May 1987. High Temperature Society of Japan, pp 151–156

    Google Scholar 

  26. Duhamel R (1996) Restrained joint laser welding. Industrial Laser Review Aug 3–4

    Google Scholar 

  27. Norris IM (1989) High power laser welding of structural steels-current status. In: Proceedings of the conference on advances in joining and cutting processes 89, Harrogate, October 1989. The Welding Institute, Great Abington, paper 55

    Google Scholar 

  28. Shannon G, Steen WM (1996) Laser welding with coaxial powder fill nozzle for sheet and thick section welding. In: ICALEO’96 proceedings, Orlando, October–November 1996. LIA, Orlando, pp 20–27

    Google Scholar 

  29. Akhter R (1990) The laser welding of zinc coated steel. PhD thesis, University of London

    Google Scholar 

  30. Katayama S, Wu Y, Matsunawa A (2001) Laser weldability of zinc-coated steels. In: ICALEO 2001 proceedings, Jacksonville, October–November 2001. LIA, Orlando, paper P520

    Google Scholar 

  31. Akhter R, Steen WM (1991) The gap model for welding zinc coated steel sheet. In: Proceedings of the conference on laser systems applications in industry, Turin, 7–9 November 1990. IATA

    Google Scholar 

  32. Tzeng Y-F (1996) Pulsed laser welding of zinc coated steel. PhD thesis, Liverpool University

    Google Scholar 

  33. Nonhof CJ (1988) Materials processing with Nd:YAG lasers. Electrochemical Publications, Ayr, p 192

    Google Scholar 

  34. Alexander J, Steen WM (1980) Effects of process variables on arc augmented laser welding. In: Proceedings of Optica ’80 conference, Budapest, Hungary, November 1980

    Google Scholar 

  35. Jørgensen M (1980) Increasing energy absorption in laser welding. Met Constr 12(2):88

    Google Scholar 

  36. Akhter R, Watkins KG, Steen WM (1990) Modifications of the composition of laser welds in electrogalvanised steel and the effects on corrosion properties. J Mater Manuf Process 5(4):67–68

    Google Scholar 

  37. Oakley PJ (1982) 2 and 5 kW fast axial flow carbon dioxide laser material processing. In: ICALEO’82 proceedings. LIA, Orlando, pp 121–128

    Google Scholar 

  38. Glasstone S (1953) Textbook of physical chemistry. Macmillan, London, p 450

    Google Scholar 

  39. Duley WW, Mueller RE (1990) Laser penetration welding in low gravity environment. In: Proceedings of the XXII ICHMT international conference on manufacturing and material processing, Dubrovnik, Yugoslavia, August 1990, pp 1309–1319

    Google Scholar 

  40. Steen WM, Eboo M (1979) Arc augmented laser welding. Construction III(7):332–336

    Google Scholar 

  41. Steen WM (1980) Arc augmented laser processing of materials. J Appl Phys 51(11):5636–5641

    Article  Google Scholar 

  42. Walz C, Seefeld T, Sepold G (2001) Process stability and design of seam geometry during hybrid welding. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 305

    Google Scholar 

  43. Engström H, Nilsson K, Flinkfeldt J (2001) Laser hybrid welding of high strength steels. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 303

    Google Scholar 

  44. Gu H, Mueller R (2001) Hybrid welding of galvanised steel sheet. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 304

    Google Scholar 

  45. Trentmann G (1997) Laser welding doubles up to tackle aluminium. Europhotonics Jun–Jul 49–50

    Google Scholar 

  46. O’Neill W, Steen WM (1988) Infra red absorption by metallic surfaces as a result of powerful u/v pulses. In: ICALEO’88 proceedings, Santa Clara, October–November 1988. Springer, Berlin/LIA, Orlando, pp 90–97

    Google Scholar 

  47. Bonss S, Brenner B, Beyer E (2000) Hybrid welding with a CO2 and diode laser. Industrial Laser User 21:26–28

    Google Scholar 

  48. Narikiyo T, Miura H, Fujinaga S, Ohmori A, Inoue K (1999) Combination of two Nd:YAG laser beams and their welding characteristics. J Laser Appl 11(2):91–95

    Article  Google Scholar 

  49. Hilton PA, Jones IA, Kennish Y (2002) Transmission laser welding of plastics. In: Proceedings of the conference LAMP

    Google Scholar 

  50. Cole CF, Noden SC, Tyrer JR, Hilton PA (1998) The application of diffractive optical elements in high power laser materials processing. In: ICALEO’98 proceedings, November 1998. LIA, Orlando, pp A84–A93

    Google Scholar 

  51. Anscombe N (2004) Laser welding penetrates the plastics market. Photonics Spectra Sep 60–66

    Google Scholar 

  52. Jones I, Rostami S (2003) Laser welding of plastics - process selection software. In: ICALEO 2003 proceedings, Jacksonville. LIA, Orlando, paper 601

    Google Scholar 

  53. Xu G,Tsuboi A,Ogawa T, Ikeda T (2008) Super-short times laser welding of thermoplastic resins using a ring beam optics. J Laser Appl 20(2):116–121

    Article  Google Scholar 

  54. Industrial Laser Review (1996) Joining fire extinguishers. Industrial Laser Review Apr 3

    Google Scholar 

  55. Matsunawa A (1991) Present and future trends of laser materials processing in Japan. In: Proc SPIE vol 1502, pp 60–71, Industrial and Scientific Uses of High-Power Lasres, Jean P. Billon and Eduardo Fabre (eds)

    Google Scholar 

  56. Lau KH, Man HC (1995) Excimer laser soldering for fine pitch surface mounted assembly. In: ICALEO’95 proceedings, San Diego, November 1995. Springer, Berlin/LIA, Orlando, pp 15–24

    Google Scholar 

  57. Adachi A, Hirota J, Hoshinouchi S (1995) Fluxless soldering with laser assembly of TCP. In: ICALEO’95 proceedings, San Diego, November 1995. Springer, Berlin/LIA, Orlando, pp 35–41

    Google Scholar 

  58. Brandner M, Seibold G, Chang C, Dausinger F, Hugel H (2000) Soldering with solid state and diode lasers: energy coupling, temperature rise and process window. J Laser Appl 12(5):194–199

    Article  Google Scholar 

  59. Laser Focus World (1985) Fibres multiplex industrial YAG laser beams, lasers and applications. Laser Focus World 21(6):8

    Google Scholar 

  60. Roessler DM (1990) New laser processing developments in the automotive industry. In: Industrial laser annual handbook. PennWell Books, Tulsa, pp 109–127

    Google Scholar 

  61. Sinar R (1997) On the road to better automotive production. Laser Power Beam Processing Mar 6–9

    Google Scholar 

  62. Warwick M, Gordon M (2006) Application studies using through transmission laser welding of polymers. In: Proceedings of the conference joining plastics 2006. NPL, London

    Google Scholar 

  63. Opto Laser Europe (1997) Laser welding polymers enter mass production. Opto Laser Europe Jul 15–17

    Google Scholar 

  64. DeMais R (1995) Laser enhanced bonding produces strong seams. Laser Focus World Aug 32–33

    Google Scholar 

  65. Jones I, Rudlin J (2006) Process monitoring methods in laser welding of plastics. In: Proceedings of the conference joining plastics 2006. NPL, London

    Google Scholar 

  66. McNaught W, Deans WF, Watson J (1997) High power laser welding in hyperbaric and water environments. J Laser Appl 9:129–136

    Article  Google Scholar 

  67. Pantsar H, Salminen A, Kujanpaa V (2001) Manufacturing procedure and cost analysis of laser welded all steel sandwich panels. In: ICALEO 2001 proceedings, Jacksonville, October 2001. LIA, Orlando, paper 1709

    Google Scholar 

  68. Azuma K, Ikemoto K (1993) Laser welding technology for joining different sheet metals for one piece stamping.In: Laser applications for mechanical industry proceedings, NATO ASI, Erice, Sicily. Kluwer, Dordrecht, pp 219–233

    Google Scholar 

  69. Marinoni G, Maccagno A, Rabino E (1989) Technical and economic comparison of laser technology with conventional technologies of welding. In: Steen WM (ed) Proceedings of the 6th international conferences on lasers in manufacturing (LIM6), Birmingham, UK, May 1989. IFS, Kempston, pp 105–120

    Google Scholar 

  70. Matsunawa A, Kim J-D (2004) Basic understanding on beam-plasma interaction in laser welding. In: Proceedings of PICALO 2004, Melbourne, Australia. LIA, Orlando, paper 401

    Google Scholar 

  71. Mizutani M, Kayayama S Keyhole behaviour and pressure distribution during laser irradiation on molten metal. In: ICALEO 2003 proceedings, Jacksonville. LIA, Orlando, paper 1004

    Google Scholar 

  72. Burrows G, Croxford N, Hoult AP, Ireland CLM, Weedon TM (1988) Welding characteristics of a 2 kW YAG laser. Proc SPIE 1021:159–166

    Article  Google Scholar 

  73. Perry RH (1963) Perry’s chemical engineers handbook, 4th edn, McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Steen, W., Mazumder, J. (2010). Laser Welding. In: Laser Material Processing. Springer, London. https://doi.org/10.1007/978-1-84996-062-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-062-5_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-061-8

  • Online ISBN: 978-1-84996-062-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics