Skip to main content

Quantitative Heterogeneous Immunoassays in Protein Modified Polydimethylsiloxane Microfluidic Channels for Rapid Detection of Disease Biomarkers

  • Protocol
  • First Online:
  • 5315 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Conventional detection of disease biomarkers employs techniques such as lateral-flow assays or central laboratory-based enzyme-linked immunosorbent assays (ELISA). Miniaturization and performance improvement of such traditional immunoassays using microfluidic technologies has proved promising in producing rapid, sensitive and automated next-generation immunosensors for quantitative diagnoses in the point-of-care setting. In this article a poly(dimethylsiloxane) (PDMS)-based immunosensor is presented for rapid detection of C-reactive protein. PDMS is selected in part because of the vast popularity of using PDMS as a material for microfluidic devices and in part because of the challenge of obtaining a stable surface coating with PDMS for immunosensing applications. Practical procedures for fabrication, surface modification, and preservation of the microfluidic immuno-chips as well as detailed descriptions of performing the microfluidic heterogeneous assay are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  2. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  3. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Modern Phys 77:977–1026

    Article  CAS  Google Scholar 

  4. Rossier JS, Gokulrangan G, Girault HH, Svojanovsky S, Wilson GS (2000) Characterization of protein adsorption and immunosorption kinetics in photoablated polymer microchannels. Langmuir 16:8489–8494

    Article  CAS  Google Scholar 

  5. Lionello A, Josserand J, Jensen H, Girault HH (2005) Protein adsorption in static microsystems: effect of the surface to volume ratio. Lab Chip 5:254–260

    Article  CAS  Google Scholar 

  6. Van Dulm P, Norde W (1983) The adsorption of human plasma albumin on solid surfaces, with special attention to the kinetic aspects. J Colloid Interface Sci 91:248–255

    Article  Google Scholar 

  7. Putnam FW (ed) (1975) The plasma proteins: structure, function and genetic control, vol 1. Academic, New York, pp 141–147

    Google Scholar 

  8. Kirby BJ, Hasselbrink EF Jr (2004) The zeta potential of microfluidic substrates. 2. Data for polymers. Electrophoresis 25:203–213

    Article  CAS  Google Scholar 

  9. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 5:210–218

    Article  CAS  Google Scholar 

  10. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144

    Article  CAS  Google Scholar 

  11. Makamba H, Kim JH, Lim K, Park N, Hahn JH (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619

    Article  CAS  Google Scholar 

  12. Wong I, Ho C-M (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  CAS  Google Scholar 

  13. Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16

    Article  CAS  Google Scholar 

  14. Ridker PM (2004) High-sensitivity C-reactive protein, inflammation, and cardiovascular risk: from concept to clinical practice to clinical benefit. Am Heart J 148:S19–S26

    Article  CAS  Google Scholar 

  15. Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81–R95

    Article  Google Scholar 

  16. Holden MA, Cremer PS (2005) Microfluidic tools for studying the specific binding, adsorption, and displacement of proteins at the interfaces. Annu Rev Phys Chem 56:369–387

    Article  CAS  Google Scholar 

  17. Dodge A, Fluri K, Verpoote E, Rooij NF (2001) Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409

    Article  CAS  Google Scholar 

  18. Schreiber G (2002) Kinetic studies of protein-protein interactions. Curr Opin Struct Bio 12:41–47

    Article  CAS  Google Scholar 

  19. Salim M, O’Sullivan B, McArthur SL, Wright PC (2007) Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA. Lab Chip 7:64–70

    Article  CAS  Google Scholar 

  20. Li P, Abolmaaty A, D’Amore C, Demming S, Anagnostopoulos C, Faghri M (2009) Development of an ultrafast quantitative heterogeneous immunoassay on pre-functionalized poly(dimethylsiloxane) microfluidic chips for the next-generation immunosensors. Microfluid Nanofluid 7:593–598

    Article  CAS  Google Scholar 

  21. Li P, Sherry A, Cortex J, Anagnostopoulos C, Faghri M (2011) A blocking-free microfluidic fluorescence heterogeneous immunoassay for point-of-care diagnostics. Biomed Microdevices:. doi:10.1007/s10544-011-9515-9

  22. Anderson GP, Jacoby MA, Ligler FS, King KD (1997) Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosens Bioelectron 12:329–336

    Article  CAS  Google Scholar 

  23. Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–1486

    Article  CAS  Google Scholar 

  24. Lionello A, Josserand J, Jensen H, Girault HH (2005) Dynamic protein adsorption in microchannels by “stop-flow” and continuous flow. Lab Chip 5:1096–1103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Li, P. (2013). Quantitative Heterogeneous Immunoassays in Protein Modified Polydimethylsiloxane Microfluidic Channels for Rapid Detection of Disease Biomarkers. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics