Skip to main content

MiRNA Targets of Prostate Cancer

  • Protocol
  • First Online:
Book cover MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

Prostate cancer (PC) is the most prevalent strain of cancer in men, but it is often slow-acting or undetected. Common diagnostic tools for PC include prostate biopsy and consequent analysis by the Gleason scoring of the tissue samples, as well as tests for the presence and levels of prostate-specific antigens. Common treatments for androgen-dependent PC include prostatectomy or irradiation, which can be invasive and significantly lower the patient’s quality of life. Alternative treatments exist, such as androgen ablation therapy, which, though effective, causes relapse into androgen-independent PC, which is far more invasive and likely to metastasize to other parts of the body. MicroRNAs (miRNA) are short nucleotide sequences (between 19 and 25 nucleotides long) that bind to various targeted messenger RNA (mRNA) sequences post-transcriptionally through complementary binding and control gene expression, often through silencing or leading to the degradation of targeted mRNA. Studies have shown that miRNAs are expressed abnormally in various cancers, suggesting that they play a pivotal role in cancer development and progression. Some miRNAs are oncogenes that incite cancerous growth, while others are involved in tumor suppression and cell cycle controls. MiRNA expression also differs in various types of cancers. Studies of PC-specific miRNAs show potential for their utilization in the prevention, diagnosis, and treatment of PC to more effectively target tumor growth and provide patients with better therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hellerstedt BA, Pienta KJ (2002) The current state of hormonal therapy for prostate cancer. CA Cancer J Clin 52:154–179

    Article  PubMed  Google Scholar 

  2. Mawakyoma HA, Mabandi JL (2010) Prostate cancer; correlation of gleason’s score and pretreatment prostate specific antigen in patients. Prof Med J 17:235–240

    Google Scholar 

  3. Feldman BJ, Feldman D (2001) The development of androgen independent prostate cancer. Nat Rev 1:34–45

    Article  CAS  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  5. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsely PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  6. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  7. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by let-7 microRNA in human cells. Science 309:1573–1576

    Article  PubMed  CAS  Google Scholar 

  8. Humphreys DT, Westman BJ, Martin DIK, Preiss T (2008) Inhibition of translation initiation by a microRNA. In: Appasani K (ed) MicroRNAs: from basic science to disease biology, 1st edn. Cambridge University Press, Cambridge, UK, pp 85–101

    Google Scholar 

  9. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineei J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT (2004) MicroRNAresponsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083

    Article  PubMed  CAS  Google Scholar 

  10. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  PubMed  CAS  Google Scholar 

  11. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2004) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  Google Scholar 

  12. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  PubMed  CAS  Google Scholar 

  13. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  14. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Fernando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2004) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  Google Scholar 

  16. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117:3155–3166

    Article  PubMed  CAS  Google Scholar 

  17. Huang Y, Green E, Stewart TM, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silence genes. Proc Natl Acad Sci USA 104:8023–8028

    Article  PubMed  CAS  Google Scholar 

  18. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  19. Fucito A, Lucchetti C, Giordano A, Romano G (2008) Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice? Int J Biochem Cell Biol 40:565–575

    Article  PubMed  CAS  Google Scholar 

  20. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Elbert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  21. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumor defines cancer gene targets. Proc Natl Acad Sci USA 203:2257–2261

    Article  Google Scholar 

  22. Fu X, Xue C, Huang Y, Xie Y, Li Y (2010) The activity and expression of microRNAs in prostate cancers. Mol Biosyst 6:2561–2572

    Article  PubMed  CAS  Google Scholar 

  23. Gandellini P, Folini M, Zaffaroni N (2009) Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol Med 15:381–390

    Article  PubMed  CAS  Google Scholar 

  24. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  PubMed  CAS  Google Scholar 

  25. Cimmino A, Calin GA, Fabbri M, Iorlo MV, Ferracin M, Shimizu M, Wojclk SE, Aqellan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targetting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  26. Linsley PS, Schelter J, Buchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    Article  PubMed  CAS  Google Scholar 

  27. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    Article  PubMed  CAS  Google Scholar 

  28. Shi XB, Tepper CG, White RW (2008) MicroRNAs and prostate cancer. J Cell Mol Med 12:1456–1465

    Article  PubMed  CAS  Google Scholar 

  29. Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402:491–509

    Article  PubMed  CAS  Google Scholar 

  30. Takeshita F, Patrawala L, Osaki M, Takahashi R, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastasic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187

    Article  PubMed  CAS  Google Scholar 

  31. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Sbramaniam S, Wang N, Shyy J, Chien S (2010) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 107:234–3239

    Article  Google Scholar 

  32. Salvi A, Sabelli C, Moncini S, Venturin M, Arici B, Riva P, Portolani N, Giulini SN, De Petro G, Barlati S (2009) MicroRNA-23b mediates urokinase and C-met ­downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J 276:2966–2982

    Article  PubMed  CAS  Google Scholar 

  33. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi K, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expresion and glutamine metabolism. Nature 458:762–766

    Article  PubMed  CAS  Google Scholar 

  34. Leite KRM, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A, Antunes AA, Srougi M (2009) Change in expression of miR-1et7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 29:265–269

    PubMed  Google Scholar 

  35. Leite KRM, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Dall’Oglio MF, Camara-Lopes LH, Srougi M (2011) MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J Urol 185:1118–1122

    Article  PubMed  CAS  Google Scholar 

  36. Shi W, Alajez NM, Bastianutto C, Hui ABY, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, O’Sullivan B, Liu F (2010) Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer 126:2036–2048

    PubMed  CAS  Google Scholar 

  37. Li L, Chen XP, Li YJ (2010) MicroRNA-146a and human disease. Scand J Immunol 71:227–231

    Article  PubMed  CAS  Google Scholar 

  38. Akao Y, Nakagawa Y, Naoe Y (2006) MicroRNAs 143 and 145 are possible common onco-mircoRNAs in human cancers. Oncol Rep 16:845–850

    PubMed  CAS  Google Scholar 

  39. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avances C, Villalba M, Culine S, Fajas L (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PloS ONE 4:1–8

    Article  Google Scholar 

  40. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365

    Article  PubMed  CAS  Google Scholar 

  41. Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, Majid S, Liu J, Khatri G, Tanaka Y, Dahiya R (2010) The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103:256–264

    Article  PubMed  CAS  Google Scholar 

  42. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and -145 in B-cell Malignancies. Cancer Sci 98:1914–1920

    Article  PubMed  CAS  Google Scholar 

  43. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  44. Wang S, Bian C, Yang Z, Bo Y, Li J, Zeng L, Zhou H, Zhao RC (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34:1461–1466

    PubMed  CAS  Google Scholar 

  45. Sachdeva M, Mo YY (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70:378–387

    Article  PubMed  CAS  Google Scholar 

  46. William AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA (2008) Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 36:1211–1215

    Article  Google Scholar 

  47. Lin SL, Chiang A, Chang D, Ying SY (2008) Loss of miR-146a function in hormone-refractory prostate cancer. RNA 14:417–424

    Article  PubMed  CAS  Google Scholar 

  48. Rosa A, Spagnoli FM, Brivanlou AH (2009) The miR-430/427/302 family controls ­mesendodermal fate specification via species-specific target selection. Dev Cell 16:517–527

    Article  PubMed  CAS  Google Scholar 

  49. Lin SL, Chang DC, Ying SY, Leu D, Wu DTS (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res 70:9473–9482

    Article  PubMed  CAS  Google Scholar 

  50. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DTS, Chen DT, Ying SY (2008) MiR-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124

    Article  PubMed  CAS  Google Scholar 

  51. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Golecchia M, Salvioni R, Supino R, Moretti R, Limonta P, Valdagni R, Daidone MG, Zaffaroni N (2009) miR-205 exerts tumor suppressive functions in human prostate cancer through down-regulation of protein kinase c-epsilon. Cancer Res 69:2287–2295

    Article  PubMed  CAS  Google Scholar 

  52. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targetting p27Kip1. J Biol Chem 282:23716–23724

    Article  PubMed  CAS  Google Scholar 

  53. Spahn M, Kneitz S, Scholz CJ, Stenger N, Rudiger T, Strobel P, Riedmiller H, Kneitz B (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127:394–403

    PubMed  CAS  Google Scholar 

  54. Sun T, Wang Q, Balk S, Brown M, Lee G-SM, Kantoff P (2009) The role of microRNA-221 and microRNA-222 in androgen independent prostate cancer cell lines. Cancer Res 69:3356–3363

    Article  PubMed  CAS  Google Scholar 

  55. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG, Ciafre SA (2008) The inhibition of the highly expressed mir-221 and mir-222 impairs the growth of prostate carcinoma xenografts in mice. PloS ONE 3:1–10

    Article  Google Scholar 

  56. Petrocca F, Lieberman J (2009) Micro­manipulating cancer: microRNA-based therapeutics? RNA Biol 6:335–340

    Article  PubMed  CAS  Google Scholar 

  57. Wang V, Wu W (2009) MicroRNA-based therapeutics for cancer. BioDrugs 23:15–23

    Article  PubMed  Google Scholar 

  58. Seto AG (2010) The road towards microRNA therapeutics. Int J Biochem Cell Biol 42:1298–1305

    Article  PubMed  CAS  Google Scholar 

  59. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY (2004) Rho/Rhotekin-mediated NF-κB activation confers resistance to apoptosis. Oncogene 23:8731–8742

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Yao Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deng, J.H., Deng, Q., Kuo, CH., Delaney, S.W., Ying, SY. (2013). MiRNA Targets of Prostate Cancer. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics