Skip to main content

Preparing Synaptoneurosomes from Adult Mouse Forebrain

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

Many neuroscience studies involve subcellular fractionation to produce isolated or enriched synaptic fractions. Synaptosomes are prepared by flotation of synaptic membranes on sucrose or Percoll gradients. Alternatively, synaptoneurosomes are prepared by filtration of tissue homogenate through a series of filters to obtain a fraction that is enriched in pinched-off dendritic spines. Whereas the protocol for making synaptosomes is reasonably well standardized and well described in the literature, there is (to our knowledge) no detailed lab protocol for making synaptoneurosomes. Here, we give the methods used in our laboratory to produce synaptoneurosomes that are suitable for studying RNAs and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebb CO, Whittaker VP (1958) Intracellular distributions of acetylcholine and choline acetylase. J Physiol 142:187–196

    PubMed  CAS  Google Scholar 

  2. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74:181–203

    Article  PubMed  CAS  Google Scholar 

  3. Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW, Creveling CR (1985) Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J Neurosci 5:2240–2253

    PubMed  CAS  Google Scholar 

  4. Weiler IJ, Greenough WT (1991) Potassium ion stimulation triggers protein translation in synaptoneurosomal polyribosomes. Mol Cell Neurosci 2:305–314

    Article  PubMed  CAS  Google Scholar 

  5. Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    Article  PubMed  CAS  Google Scholar 

  6. Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    Article  PubMed  CAS  Google Scholar 

  7. Smalheiser NR, Lugli G, Torvik VI, Mise N, Ikeda R, Abe K (2008) Natural antisense transcripts are co-expressed with sense mRNAs in synaptoneurosomes of adult mouse forebrain. Neurosci Res 62:236–239

    Article  PubMed  CAS  Google Scholar 

  8. Smalheiser NR, Collins BJ (2000) Coordinate enrichment of cranin (dystroglycan) subunits in synaptic membranes of sheep brain. Brain Res 887:469–471

    Article  PubMed  CAS  Google Scholar 

  9. Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci 94(18):9956– 9961

    Article  PubMed  CAS  Google Scholar 

  10. Tucker RP, Garner CC, Matus A (1989) In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain. Neuron 2(3):1245– 1256

    Article  PubMed  CAS  Google Scholar 

  11. Nicoloso M, Qu LH, Michot B, Bachellerie JP (1996) Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2’-O-ribose methylation of rRNAs. J Mol Biol 260(2):178–195

    Article  PubMed  CAS  Google Scholar 

  12. Vitali P, Royo H, Marty V, Bortolin-Cavaillé ML, Cavaillé J (2010) Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J Cell Sci 123(Pt 1): 70–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank John Davis for his ongoing support and Ivan Jeanne Weiler for her generous help in teaching us their protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Smalheiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lugli, G., Smalheiser, N.R. (2013). Preparing Synaptoneurosomes from Adult Mouse Forebrain. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics