Skip to main content

Small Animal Models of Xenotransplantation

  • Protocol
  • First Online:
Book cover Xenotransplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 885))

Abstract

Organ transplantation has become a successful and acceptable treatment for end-stage organ failure. Such success has allowed transplant patients to resume a normal lifestyle. The demands for transplantation have been steadily increasing, as more patients and new diseases are being deemed eligible for treatment via transplantation. However, it is clear that human organs will never meet the increasing demand of transplantation. Therefore, scientists must continue to pursue alternative therapies and explore new treatments to meet the growing demand for the limited number of organs available. Transplanting organs from animals into humans (xenotransplantation) is one such therapy. The observed enthusiasm for xenotransplantation, irrespective of the severe shortage of human organs and tissues available for transplantation, can be said to stem from at least two factors. First, there is the possibility that animal organs and tissues might be less susceptible than those of humans to the recurrence of disease processes. Second, a xenograft might be used as a vehicle for introducing novel genes or biochemical processes which could be of therapeutic value for the transplant recipient.

To date, millions of lives have been saved by organ transplantation. These remarkable achievements would have been impossible without experimental transplantation research in animal models. Presently, more than 95% of organ transplantation research projects are carried out using rodents, such as rats and mice. The key factor to ensure the success of these experiments lies in state-of-the art experimental surgery. Small animal models offer unique advantages for the mechanistic study of xenotransplantation rejection. Currently, multiple models have been developed for investigating the different stages of immunological barriers in xenotransplantation. In this chapter, we describe six valuable small animal models that have been used in xenotransplantation research. The methodology for the small animal model establishment includes animal selection, preoperative care, anesthesia, postoperative care, and detailed procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auchincloss H Jr (1988) Xenogeneic transplantation. A review. Transplantation 46:1–20

    Article  PubMed  Google Scholar 

  2. Calne RY (1970) Organ transplantation between widely disparate species. Transplant Proc 2:550–556

    PubMed  CAS  Google Scholar 

  3. Auchincloss H Jr, Sachs DH (1998) Xenogeneic transplantation. Annu Rev Immunol 16:433–470

    Article  PubMed  CAS  Google Scholar 

  4. van den Bogaerde J, White DJ (1997) Xenogeneic transplantation. Br Med Bull 53:904–920

    Article  PubMed  Google Scholar 

  5. Leventhal JR, Matas AJ, Sun LH, Reif S, Bolman RM 3rd, Dalmasso AP, Platt JL (1993) The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model. Transplantation 56:1–8

    Article  PubMed  CAS  Google Scholar 

  6. Zaidi A, Schmoeckel M, Bhatti F, Waterworth P, Tolan M, Cozzi E, Chavez G, Langford G, Thiru S, Wallwork J et al (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65:1584–1590

    Article  PubMed  CAS  Google Scholar 

  7. Lin SS, Weidner BC, Byrne GW, Diamond LE, Lawson JH, Hoopes CW, Daniels LJ, Daggett CW, Parker W, Harland RC et al (1998) The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants. J Clin Invest 101:1745–1756

    Article  PubMed  CAS  Google Scholar 

  8. Platt JL, Bach FH (1991) The barrier to xenotransplantation. Transplantation 52:937–947

    Article  PubMed  CAS  Google Scholar 

  9. Goodman M (1970) Molecular-genetic appro­aches to the classification of animals. Transplant Proc 2:432–437

    PubMed  CAS  Google Scholar 

  10. Chong AS, Shen J, Xiao F, Blinder L, Wei L, Sankary H, Foster P, Williams J (1996) Delayed xenograft rejection in the concordant hamster heart into Lewis rat model. Transplantation 62:90–96

    Article  PubMed  CAS  Google Scholar 

  11. Gorczynski RM, Fu XM, Chung S, Sullivan B, Chen Z (1995) Manipulation of xenogeneic skin and/or renal graft survival in the rat-mouse concordant combination by portal vein pretransplant transfusion. Transpl Immunol 3:321–329

    Article  PubMed  CAS  Google Scholar 

  12. Miyagawa S, Hirose H, Shirakura R, Naka Y, Nakata S, Kawashima Y, Seya T, Matsumoto M, Uenaka A, Kitamura H (1988) The mechanism of discordant xenograft rejection. Tran­splantation 46:825–830

    Article  PubMed  CAS  Google Scholar 

  13. Pruitt SK, Baldwin WM 3rd, Barth RN, Sanfilippo F (1993) The effect of xenoreactive antibody and B cell depletion on hyperacute rejection of guinea pig-to-rat cardiac xenografts. Transplantation 56:1318–1324

    Article  PubMed  CAS  Google Scholar 

  14. Matsumiya G, Shirakura R, Miyagawa S, Izutani H, Sawa Y, Nakata S, Matsuda H (1994) Analysis of rejection mechanism in the rat to mouse cardiac xenotransplantation. Role and characteristics of anti-endothelial cell antibodies. Transplantation 57:1653–1660

    PubMed  CAS  Google Scholar 

  15. Zhang Z, Zhong R, Jiang J, Wang J, Garcia B, Le Feuvre C, White M, Stiller C, Lazarovits A (1997) Prevention of heart allograft and kidney xenograft rejection by monoclonal antibody to CD45RB. Transplant Proc 29:1253

    Article  PubMed  CAS  Google Scholar 

  16. Platt JL, Parker W (1995) Another step towards xenotransplantation. Nat Med 1:1248–1250

    Article  PubMed  CAS  Google Scholar 

  17. Salame E, Chereau C, Calmus Y, Ayani E, Houssin D, Weill B (1992) Superacute xenogenic rejection: attempted treatment with anti-idiotypic antibodies. Presse Med 21:1945–1946

    PubMed  CAS  Google Scholar 

  18. Grimm H, Mages P, Lindemann G, Potthoff M, Bohnet U, Korom S, Ermert L (2000) Evidence against a pivotal role of preformed antibodies in delayed rejection of a guinea pig-to-rat heart xenograft. J Thorac Cardiovasc Surg 119:477–487

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka M, Murase N, Ye Q, Miyazaki W, Nomoto M, Miyazawa H, Manez R, Toyama Y, Demetris AJ, Todo S et al (1996) Effect of anticomplement agent K76 COOH on hamster-to-rat and guinea pig-to-rat heart xenotransplantation. Transplantation 62:681–688

    Article  PubMed  CAS  Google Scholar 

  20. Urbani L, Fabre M, Cardoso J, Lambin P, Devillier P, Soubrane O, Houssin D, Gautreau C (1998) Predominant role of the Fab fragment in delaying hyperacute rejection in guinea pig-to-rat xenotransplantation. Transplantation 66:395–397

    Article  PubMed  CAS  Google Scholar 

  21. Alwayn IP, van Bockel HJ, Daha MR, Scheringa M (1999) Hyperacute rejection in the guinea pig-to-rat model without formation of the membrane attack complex. Transpl Immunol 7:177–182

    Article  PubMed  CAS  Google Scholar 

  22. Kiyochi H, Zhang Z, Jiang J, Wang H, Garcia B, Kellersmann R, Blomer A, Zhong R, Grant D (2000) Histologic comparison of small bowel, heart, and kidney xenografts in a rat to mouse model. Transplant Proc 32:964

    Article  PubMed  CAS  Google Scholar 

  23. Wang H, Rollins SA, Gao Z, Garcia B, Zhang Z, Xing J, Li L, Kellersmann R, Matis LA, Zhong R (1999) Complement inhibition with an anti-C5 monoclonal antibody prevents hyperacute rejection in a xenograft heart transplantation model. Transplantation 68:1643–1651

    Article  PubMed  CAS  Google Scholar 

  24. Wang H, Hosiawa KA, Garcia B, Shum JB, Dutartre P, Kelvin DJ, Zhong R (2003) Treatment with a short course of LF 15-0195 and continuous cyclosporin A attenuates acute xenograft rejection in a rat-to-mouse cardiac transplantation model. Xenotransplantation 10:325–336

    Article  PubMed  CAS  Google Scholar 

  25. Wang H, Hosiawa KA, Garcia B, Shum JB, Dutartre P, Kelvin DJ, Zhong R (2003) Attenuation of acute xenograft rejection by short-term treatment with LF15-0195 and monoclonal antibody against CD45RB in a rat-to-mouse cardiac transplantation model. Tran­splantation 75:1475–1481

    Article  PubMed  CAS  Google Scholar 

  26. Kiyochi H, Grant D, Zhang Z, Garcia B, Kellersmann R, Wang H, Zhong R (1998) Rat-to-mouse small bowel xenotransplantation: novel models to study hyperacute and acute humoral rejection. Transplant Proc 30:2589

    Article  PubMed  CAS  Google Scholar 

  27. Yin D, Ma LL, Blinder L, Shen J, Sankary H, Williams JW, Chong AS (1998) Induction of species-specific host accommodation in the hamster-to-rat xenotransplantation model. J Immunol 161:2044–2051

    PubMed  CAS  Google Scholar 

  28. Zhang Z, Bedard E, Luo Y, Wang H, Deng S, Kelvin D, Zhong R (2000) Animal models in xenotransplantation. Expert Opin Investig Drugs 9:2051–2068

    Article  PubMed  CAS  Google Scholar 

  29. Salomon S, Steinbruchel D, Nielsen B, Kemp E (1996) Hamster to rat kidney transplantation: technique, functional outcome and complications. Urol Res 24:211–216

    Article  PubMed  CAS  Google Scholar 

  30. Miyazawa H, Murase N, Demetris AJ, Matsumoto K, Nakamura K, Ye Q, Manez R, Todo S, Starzl TE (1995) Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. Transplantation 59:1183–1188

    PubMed  CAS  Google Scholar 

  31. Wang H, Arp J, Huang X, Liu W, Ramcharran S, Jiang J, Garcia B, Kanai N, Min W, O’Connell PJ et al (2006) Distinct subsets of dendritic cells regulate the pattern of acute xenograft rejection and susceptibility to cyclosporine therapy. J Immunol 176:3525–3535

    PubMed  CAS  Google Scholar 

  32. Hosiawa KA, Wang H, DeVries ME, Garcia B, Jiang J, Zhou D, Cameron MJ, Zhong R, Kelvin DJ (2006) Regulation of B- and T-cell mediated xenogeneic transplant rejection by interleukin 12. Transplantation 81:265–272

    Article  PubMed  CAS  Google Scholar 

  33. Wang H, DeVries ME, Deng S, Khandaker MH, Pickering JG, Chow LH, Garcia B, Kelvin DJ, Zhong R (2000) The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nat Med 6:549–555

    Article  PubMed  CAS  Google Scholar 

  34. Zhong T, Liu Y, Jiang J, Wang H, Temple CL, Sun H, Garcia B, Zhong R, Ross DC (2007) Long-term limb allograft survival using a short course of anti-CD45RB monoclonal antibody, LF 15-0195, and rapamycin in a mouse model. Transplantation 84:1636–1643

    Article  PubMed  CAS  Google Scholar 

  35. Jiang J, Wang H, Madrenas J, Zhong R (1999) Surgical technique for vascularized thymus transplantation in mice. Microsurgery 19:56–60

    Article  PubMed  CAS  Google Scholar 

  36. Jiang J, Humar A, Gracia B, Zhong R (1998) Surgical technique for vascularized ear transplantation in mice. Microsurgery 18:42–46

    Article  PubMed  CAS  Google Scholar 

  37. Wang H, Hosiawa KA, Min W, Yang J, Zhang X, Garcia B, Ichim TE, Zhou D, Lian D, Kelvin DJ et al (2003) Cytokines regulate the pattern of rejection and susceptibility to cyclosporine therapy in different mouse recipient strains after cardiac allografting. J Immunol 171:3823–3836

    PubMed  CAS  Google Scholar 

  38. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Z, Lazarovits A, Gao Z, Garcia B, Jiang J, Wang J, Xing JJ, White M, Zhong R (2000) Prolongation of xenograft survival using monoclonal antibody CD45RB and cyclophosphamide in rat-to-mouse kidney and heart transplant models. Transplantation 69:1137–1146

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Z, Schlachta C, Duff J, Stiller C, Grant D, Zhong R (1995) Improved techniques for kidney transplantation in mice. Microsurgery 16:103–109

    Article  PubMed  CAS  Google Scholar 

  41. Zhong R, Zhang Z, Quan D, Duff J, Stiller C, Grant D (1993) Development of a mouse intestinal transplantation model. Microsurgery 14:141–145

    Article  PubMed  CAS  Google Scholar 

  42. Zhong R, Zhang Z, Quan D, Garcia B, Duff J, Stiller C, Grant D (1993) Intestinal transplantation in the mouse. Transplantation 56:1034–1037

    Article  PubMed  CAS  Google Scholar 

  43. Zhang F, Shi DY, Kryger Z, Moon W, Lineaweaver WC, Buncke HJ (1999) Development of a mouse limb transplantation model. Microsurgery 19:209–213

    Article  PubMed  CAS  Google Scholar 

  44. Tung TH, Mohanakumar T, Mackinnon SE (2001) Development of a mouse model for heterotopic limb and composite-tissue transplantation. J Reconstr Microsurg 17:267–273

    Article  PubMed  CAS  Google Scholar 

  45. Han WR, Murray-Segal LJ, Mottram PL (1999) Modified technique for kidney transplantation in mice. Microsurgery 19:272–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to acknowledge my past mentor, Dr. Robert Zhong who passed away in 2006. He was a pioneer in experimental microsurgery and transplantation and will be remembered for his gentle spirit as well as his unwavering focus on translational transplant research. Since his death, we strive to carry on not only his work but also his dreams and his spirit. I also acknowledge Dr. Shuhua Luo for his excellent assistance in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, H. (2012). Small Animal Models of Xenotransplantation. In: Costa, C., Máñez, R. (eds) Xenotransplantation. Methods in Molecular Biology, vol 885. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-845-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-845-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-844-3

  • Online ISBN: 978-1-61779-845-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics