Skip to main content

Passive and Electrically Actuated Solid-State Nanopores for Sensing and Manipulating DNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

Solid-state nanopores have emerged as powerful new tools for electrically characterizing single DNA molecules. When DNA molecules are made to rapidly translocate a nanopore by electrophoresis, the resulting ionic current blockage provides information about the molecular length and folding conformation. A solid-state nanopore can also be integrated with nanofabricated actuators and sensors, such as an embedded gate electrode or transverse tunneling electrodes, to enhance its functionality. Here we describe detailed methods for fabricating passive solid-state nanopores and using them to detect DNA translocations. We also describe procedures for integrating electrodes into the nanopore membrane in order to create an electrically active structure. Finally, we describe how to modulate the ionic conductance through a pore whose inner surface is surrounded by an embedded annular gate electrode.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  CAS  Google Scholar 

  2. Branton D et al (2008) The potential and challenges of nanopore sequencing. Nature Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  3. Clarke J, Wu H, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  Google Scholar 

  4. Derrington IM, Butler TZ et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065

    Article  CAS  Google Scholar 

  5. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169

    Article  CAS  Google Scholar 

  6. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of soli-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  CAS  Google Scholar 

  7. Branton D, Golovchenko JA, Denison TJ (2003) Molecular and atomic scale evaluation of biopolymers. US Patent Specification 6627067

    Google Scholar 

  8. Li J, Stein D, Schurmann GM, King GM, Golovchenko J, Branton D, Aziz M (2007) Solid state molecular probe device. US Patent Specification 7258838

    Google Scholar 

  9. Zwolak M, Di Ventra M (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5:421–424

    Article  CAS  Google Scholar 

  10. Lagerqvist J, Zwolak M, Di Ventra M (2006) Fast DNA sequencing via transverse electronic transport. Nano Lett 6:779–782

    Article  CAS  Google Scholar 

  11. He J, Lin L, Zhang P, Spadola Q, Xi Z, Fu Q, Lindsay S (2008) Transverse tunneling through DNA hydrogen bonded to an electrode. Nano Lett 8:2530–2534

    Article  CAS  Google Scholar 

  12. Keyser UF, Koeleman BN et al (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477

    Article  CAS  Google Scholar 

  13. Peng H, Ling XS (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20:185101

    Article  Google Scholar 

  14. Olasagasti F, Lieberman KR et al (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech 5:798–806

    Article  CAS  Google Scholar 

  15. Gershow M, Golovchenko JA (2007) Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech 2:775–779

    Article  CAS  Google Scholar 

  16. Stein D (2007) Molecular ping-pong. Nature Nanotech 19:741–742

    Article  Google Scholar 

  17. Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153103

    Article  Google Scholar 

  18. Jiang Z, Stein D (2011) Charge regulation in nanopore ionic field-effect transistors. Phys Rev E Stat Nonlin Soft Matter Phys 83:031203

    Article  Google Scholar 

  19. Jiang Z, Mihovilovic M, Chan J, Stein D (2010) Fabrication of nanopores with embedded annular electrodes and transverse CNT electrodes. J Phys Condens Matter 22:454114

    Article  Google Scholar 

  20. Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton J-P (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17:622–633

    Article  CAS  Google Scholar 

  21. Krapf D, Wu MY, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109

    Article  CAS  Google Scholar 

  22. Sze SM (2002) Semiconductor devices, physics and technology, 2nd edn. Wiley, New York

    Google Scholar 

  23. Campbell SA (2001) The science and engineering of microelectronic fabrication, 2nd edn. Oxford University Press, New York

    Google Scholar 

  24. Jiang Z, Stein D (2010) Electro-fluidic gating of a chemically reactive surface. Langmuir 26:8161–8173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jiang, Z., Mihovilovic, M., Teich, E., Stein, D. (2012). Passive and Electrically Actuated Solid-State Nanopores for Sensing and Manipulating DNA. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics