Skip to main content

Proteomic Analysis of Skeletal Muscle Tissue Using SELDI-TOF MS: Application to Disuse Atrophy

  • Protocol
  • First Online:
SELDI-TOF Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 818))

Abstract

Skeletal muscle atrophy in response to disuse/unloading is a complex adaptation that involves many components of the muscle tissue. The underlying mechanisms that initiate and control the loss of muscle tissue during this response, especially contractile proteins located within the myofibers, are as yet unclear. One approach capable of distinguishing protein changes specifically associated with disuse/unloading-induced skeletal muscle atrophy is to compare the proteomic profiles of similar muscles between control, unloaded/atrophied, and unloaded/“atrophy-protected” experimental conditions. By utilizing a subtractive proteomic analysis approach, those proteins specifically modulated during the atrophic response can be identified and discriminated from those associated with disuse in general. We here describe the use of SELDI-TOF MS coupled with micro-scale preparative ion-exchange chromatography to detect proteins potentially specifically associated with the atrophic response in rat skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke, M.S., The effects of exercise on skeletal muscle in the aged. J Musculoskelet Neuronal Interact, 2004. 4(2): p. 175–8.

    PubMed  CAS  Google Scholar 

  2. Giangregorio, L. and N. McCartney, Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med, 2006. 29(5): p. 489–500.

    PubMed  Google Scholar 

  3. Ferrando, A.A., D. Paddon-Jones, and R.R. Wolfe, Bed rest and myopathies. Curr Opin Clin Nutr Metab Care, 2006. 9(4): p. 410–5.

    Article  PubMed  Google Scholar 

  4. Argiles, J.M., S. Busquets, and F.J. Lopez-Soriano, The pivotal role of cytokines in muscle wasting during cancer. Int J Biochem Cell Biol, 2005. 37(10): p. 2036–46.

    Article  PubMed  CAS  Google Scholar 

  5. Fitts, R.H., D.R. Riley, and J.J. Widrick, Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol, 2001. 204(Pt 18): p. 3201–8.

    PubMed  CAS  Google Scholar 

  6. Boonyarom, O. and K. Inui, Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf), 2006. 188(2): p. 77–89.

    Article  CAS  Google Scholar 

  7. Baldwin, K.M., Effects of altered loading states on muscle plasticity: what have we learned from rodents? Med Sci Sports Exerc, 1996. 28(10 Suppl): p. S101–6.

    PubMed  CAS  Google Scholar 

  8. Adams, G.R., V.J. Caiozzo, and K.M. Baldwin, Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol, 2003. 95(6): p. 2185–201.

    PubMed  Google Scholar 

  9. Kyparos, A., et al., Mechanical stimulation of the plantar foot surface attenuates soleus muscle atrophy induced by hindlimb unloading in rats. J Appl Physiol, 2005. 99(2): p. 739–46.

    Article  PubMed  Google Scholar 

  10. Jackman, R.W. and S.C. Kandarian, The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol, 2004. 287(4): p. C834-43.

    Article  PubMed  CAS  Google Scholar 

  11. Musacchia, X.J., J.M. Steffen, and R.D. Fell, Disuse atrophy of skeletal muscle: animal models. Exerc Sport Sci Rev, 1988. 16: p. 61–87.

    Article  PubMed  CAS  Google Scholar 

  12. Tesch, P.A., et al., Effects of 17-day spaceflight on knee extensor muscle function and size. Eur J Appl Physiol, 2005. 93(4): p. 463–8.

    Article  PubMed  Google Scholar 

  13. Trappe, S., et al., Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol, 2004. 557(Pt 2): p. 501–13.

    Article  PubMed  CAS  Google Scholar 

  14. Bamman, M.M., et al., Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol, 1998. 84(1): p. 157–63.

    PubMed  CAS  Google Scholar 

  15. Bamman, M.M., et al., Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms. Electrophoresis, 1999. 20(3): p. 466–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kandarian, S.C. and E.J. Stevenson, Molecular events in skeletal muscle during disuse atrophy. Exerc Sport Sci Rev, 2002. 30(3): p. 111–6.

    Article  PubMed  Google Scholar 

  17. Zhang, P., X. Chen, and M. Fan, Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses, 2007. 69(2): p. 310–21.

    Article  PubMed  Google Scholar 

  18. Haddad, F., K.M. Baldwin, and P.A. Tesch, Pretranslational markers of contractile protein expression in human skeletal muscle: effect of limb unloading plus resistance exercise. J Appl Physiol, 2005. 98(1): p. 46–52.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, W.E., et al., Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J Gravit Physiol, 2002. 9(2): p. 61–70.

    PubMed  Google Scholar 

  20. Lee, S.J. and A.C. McPherron, Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA, 2001. 98(16): p. 9306–11.

    Article  PubMed  CAS  Google Scholar 

  21. Wolfman, N.M., et al., Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA, 2003. 100(26): p. 15842–6.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Y.W., et al., Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics, 2007. 31(3): p. 510–20.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, X., et al., Merg1a K+ channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway. Faseb J, 2006. 20(9): p. 1531–3.

    Article  PubMed  CAS  Google Scholar 

  24. McKinnell, I.W. and M.A. Rudnicki, Molecular mechanisms of muscle atrophy. Cell, 2004. 119(7): p. 907–10.

    Article  PubMed  CAS  Google Scholar 

  25. Raddatz, K., et al., A proteome map of murine heart and skeletal muscle. Proteomics, 2008. 8(9): p. 1885–97.

    Article  PubMed  CAS  Google Scholar 

  26. Gelfi, C., et al., The human muscle proteome in aging. J Proteome Res, 2006. 5(6):p. 1344–53.

    Article  PubMed  CAS  Google Scholar 

  27. Isfort, R.J., et al., Proteomic analysis of the atrophying rat soleus muscle following denervation. Electrophoresis, 2000. 21(11): p. 2228–34.

    Article  PubMed  CAS  Google Scholar 

  28. Moriggi, M., et al., A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-L-carnitine supplementation. Proteomics, 2008. 8(17):p. 3588–604.

    Article  PubMed  CAS  Google Scholar 

  29. Clarke, M.S.F., S. Weinberger, and C.H. Clarke, Detection of protein biomarkers during oxidative stress using Surface Enhanced Laser Desorption/Ionization-Time of Flight (SELD-TOF) Mass Spectrometry., in Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention, R.G.C.H. Rodriguez, Editor. 2002, World Scientific Publishing Co. p. 366–379.

    Google Scholar 

  30. Engwegen, J.Y., et al., Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci, 2006. 27(5): p. 251–9.

    Article  PubMed  CAS  Google Scholar 

  31. Pisitkun, T., R. Johnstone, and M.A. Knepper, Discovery of urinary biomarkers. Mol Cell Proteomics, 2006. 5(10): p. 1760–71.

    Article  PubMed  CAS  Google Scholar 

  32. Xiao, Z., et al., Proteomic patterns: their potential for disease diagnosis. Mol Cell Endocrinol, 2005. 230(1–2): p. 95–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Dr. Antonios Kyparos for providing the muscle samples used in this study. This study was facilitated by the existence of a Space Act Agreement between NASA-Johnson Space Center and the University of Houston which allowed access to the SELDI-TOF MS equipment located at NASA-JSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. F. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Clarke, M.S.F. (2012). Proteomic Analysis of Skeletal Muscle Tissue Using SELDI-TOF MS: Application to Disuse Atrophy. In: Clarke, C., McCarthy, D. (eds) SELDI-TOF Mass Spectrometry. Methods in Molecular Biology, vol 818. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-418-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-418-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-417-9

  • Online ISBN: 978-1-61779-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics