Skip to main content

The Role of Heat Shock Factors in Stress-Induced Transcription

  • Protocol
  • First Online:
Molecular Chaperones

Abstract

Heat shock proteins (HSPs) are rapidly induced after stresses, such as heat shock, and accumulate at high concentrations in cells. HSP induction involves a family of heat shock transcription factors that bind the heat shock elements of the HSP genes and mediate transcription in trans. We discuss methods for the study of HSP binding to HSP promoters and the consequent increases in HSP gene expression in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorger PK, Pelham HRB. Purification and characterization of a heat shock element binding protein from yeast. EMBO Journal 1987;6:3035–41.

    PubMed  CAS  Google Scholar 

  2. Sorger PK, Nelson HCM. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 1989;59:807–13.

    Article  PubMed  CAS  Google Scholar 

  3. Sorger PK, Pelham HRB. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 1988;54:855–64.

    Article  PubMed  CAS  Google Scholar 

  4. Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 1993;259:230–4.

    Article  PubMed  CAS  Google Scholar 

  5. Wu C. Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 1995;11:441–69.

    Article  CAS  Google Scholar 

  6. He H, Soncin F, Grammatikakis N, et al. Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 2003;278(37):35465–75.

    Article  PubMed  CAS  Google Scholar 

  7. Fujimoto M, Hayashida N, Katoh T, et al. A Novel Mouse HSF3 Has the Potential to Activate Non-classical Heat Shock Genes ­during Heat Shock. Mol Biol Cell 2009.

    Google Scholar 

  8. Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. Embo J 1998;17(6):1750–8.

    Article  PubMed  CAS  Google Scholar 

  9. Tanabe M, Sasai N, Nagata K, et al. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 1999;274(39):27845–56.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schoffl F. Heat Shock Factors HsfB1 and HsfB2b Are Involved in the Regulation of Pdf1.2 Expression and Pathogen Resistance in Arabidopsis. Mol Plant 2009;2(1):152–65.

    Google Scholar 

  11. Scharf KD, Rose S, Zott W, Schoffl F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. Embo J 1990;9(13):4495–501.

    PubMed  CAS  Google Scholar 

  12. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 1998;273:7523–8.

    Article  PubMed  CAS  Google Scholar 

  13. Morange M. HSFs in development. Handb Exp Pharmacol 2006(172):153–69.

    Article  PubMed  CAS  Google Scholar 

  14. Abravaya K, Myers MP, Murphy SP, Morimoto RI. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock protein expression. Genes Dev 1992;6:1153–64.

    Article  PubMed  CAS  Google Scholar 

  15. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998;94(4):471–80.

    Article  PubMed  CAS  Google Scholar 

  16. Guettouche T, Boellmann F, Lane WS, Voellmy R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 2005;6(1):4.

    Article  PubMed  Google Scholar 

  17. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature 2006;440(7083):556–60.

    Article  PubMed  CAS  Google Scholar 

  18. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol Cell Biol 1997;17(9):5317–27.

    PubMed  CAS  Google Scholar 

  19. Price BD, Calderwood SK. Heat-induced transcription from RNA polymerases II and III and HSF binding are co-ordinately regulated by the products of the heat shock genes. J Cell Physiol 1992;153:392–401.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao M, Tang D, Lechpammer S, et al. Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. J Biol Chem 2002;277(46):44539–47.

    Article  PubMed  CAS  Google Scholar 

  21. Subjeck JR, Sciandra JJ, Johnson RJ. Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol 1982;55(656):579–84.

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Khaleque MA, Zhao MJ, Zhong R, Gaestel M, Calderwood SK. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 2006;281(2):782–91.

    Article  PubMed  CAS  Google Scholar 

  23. Soncin F, Prevelige R, Calderwood SK. Expression and purification of human heat-shock transcription factor 1. Protein Expr Purif 1997;9(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  24. Schreiber E, Matthias P, Muller MM, Schaffner W. Rapid detection of octamer binding proteins with “mini-extracts” prepared from a small number of cells. Nucleic Acids Res 1989;17:6419.

    Article  PubMed  CAS  Google Scholar 

  25. Wu B, Hunt C, Morimoto RI. Structure and expression of the human gene encoding the major heat shock protein HSP70. Molecular and Cellular Biology 1985;5:330–41.

    PubMed  CAS  Google Scholar 

  26. Bruce JL, Chen C, Xie Y, et al. Activation of heat shock transcription factor 1 to a DNA binding form during the G(1)phase of the cell cycle. Cell Stress Chaperones 1999;4(1):36–45.

    PubMed  CAS  Google Scholar 

  27. Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 1996;271(40):24874–9.

    PubMed  CAS  Google Scholar 

  28. Nunes SL, Calderwood SK. Heat shock factor-1 and the heat shock cognate 70 protein associate in high molecular weight complexes in the cytoplasm of NIH-3 T3 cells. Biochem Biophys Res Commun 1995;213(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  29. Westwood T, Wu C. Activation of drosophila heat shock factor: conformational changes associated with monomer-to-trimer transition. Mol Cell Biol 1993;13:3481–6.

    PubMed  CAS  Google Scholar 

  30. Xie Y, Zhong R, Chen C, Calderwood SK. Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J Biol Chem 2003;278(7):4687–98.

    Article  PubMed  CAS  Google Scholar 

  31. Solomon MJ, Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 1985;82(19):6470–4.

    Article  PubMed  CAS  Google Scholar 

  32. Takacs-Vellai K, Vellai T, Chen EB, et al. Transcriptional control of Notch signaling by a HOX and a PBX/EXD protein during vulval development in C. elegans. Dev Biol 2007;302(2):661–9.

    Google Scholar 

  33. Khaleque MA, Bharti A, Gong J, et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 2008;27(13):1886–93.

    Article  PubMed  CAS  Google Scholar 

  34. Tang D, Khaleque MA, Jones EL, et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 2005;10(1):46–58.

    Article  PubMed  CAS  Google Scholar 

  35. Rabindran SK, Gioorgi G, Clos J, Wu C. Molecular Cloning and expression of a human heat shock factor, HSF1. Proceedings of the National Academy of Sciences (USA) 1991;88:6906–10.

    Article  CAS  Google Scholar 

  36. Oesterreich S, Hickey E, Weber L, Fuqua SA. Basal regulatory promoter elements in the hsp27 gene in human breast carcinoma cells. Biochem Biophys Res Commun 1996;222:155–63.

    Article  PubMed  CAS  Google Scholar 

  37. Chen C, Xie Y, Stevenson MA, Auron PE, Calderwood SK. Heat shock factor 1 represses Ras-induced transcriptional activation of the c-fos gene. J Biol Chem 1997;272(43):26803–6.

    Article  PubMed  CAS  Google Scholar 

  38. Wang XZ, Asea, A., Xie,Y., Kabingu,E., Stevenson, M.A., and Calderwood, S.K. RSK2 represses HSF1 activation during heat shock. Cell Stress & Chaperones 2000;5:432–7.

    Google Scholar 

  39. Hunt C, Calderwood SK. Characterization and sequence of a mouse HSP70 gene and its expression in mouse cell lines. Gene 1990;87:199–204.

    Article  PubMed  CAS  Google Scholar 

  40. Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 2002;277(14):11802–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH research grants RO-1CA047407, R01CA119045, and RO-1CA094397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, Y. et al. (2011). The Role of Heat Shock Factors in Stress-Induced Transcription. In: Calderwood, S., Prince, T. (eds) Molecular Chaperones. Methods in Molecular Biology, vol 787. Humana Press. https://doi.org/10.1007/978-1-61779-295-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-295-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-294-6

  • Online ISBN: 978-1-61779-295-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics