Skip to main content

Predicting Node Characteristics from Molecular Networks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 781))

Abstract

A large number of genome-scale networks, including protein–protein and genetic interaction networks, are now available for several organisms. In parallel, many studies have focused on analyzing, characterizing, and modeling these networks. Beyond investigating the topological characteristics such as degree distribution, clustering coefficient, and average shortest-path distance, another area of particular interest is the prediction of nodes (genes) with a given characteristic (labels) – for example prediction of genes that cause a particular phenotype or have a given function. In this chapter, we describe methods and algorithms for predicting node labels from network-based datasets with an emphasis on label propagation algorithms (LPAs) and their relation to local neighborhood methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marcotte, E.M., et al., Detecting protein function and protein-protein interactions from genome sequences. Science, 1999. 285(5428): p. 751–3.

    Google Scholar 

  2. Wu, X., et al., Network-based global inference of human disease genes. Mol Syst Biol, 2008. 4: p. 189.

    Google Scholar 

  3. Aerts, S., et al., Gene prioritization through genomic data fusion. Nat Biotechnol, 2006. 24(5): p. 537–44.

    Google Scholar 

  4. Sharan, R., I. Ulitsky, and R. Shamir, Network-based prediction of protein function. Mol Syst Biol, 2007. 3: p. 88.

    Google Scholar 

  5. Oti, M. and H.G. Brunner, The modular nature of genetic diseases. Clin Genet, 2007. 71(1): p. 1–11.

    Google Scholar 

  6. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25–9.

    Google Scholar 

  7. Ogata, H., et al., KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 1999. 27(1): p. 29–34.

    Google Scholar 

  8. Ruepp, A., et al., The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res, 2004. 32(18): p. 5539–45.

    Google Scholar 

  9. Robinson, P.N., et al., The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet, 2008. 83(5): p. 610–5.

    Google Scholar 

  10. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2005. 33(Database issue): p. D514–7.

    Google Scholar 

  11. Chua, H.N., W.K. Sung, and L. Wong, Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics, 2006. 22(13): p. 1623–30.

    Google Scholar 

  12. Zhou, X., M.C. Kao, and W.H. Wong, Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA, 2002. 99(20): p. 12783–8.

    Google Scholar 

  13. Myers, C.L., et al., Discovery of biological networks from diverse functional genomic data. Genome Biol, 2005. 6(13): p. R114.

    Google Scholar 

  14. Karaoz, E., et al., Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp Toxicol Pathol, 2002. 54(2): p. 97–108.

    Google Scholar 

  15. Deng, M., et al., Prediction of protein function using protein-protein interaction data. J Comput Biol, 2003. 10(6): p. 947–60.

    Google Scholar 

  16. Nabieva, E., et al., Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005. 21 Suppl 1: p. i302–10.

    Google Scholar 

  17. Mostafavi, S., et al., GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol, 2008. 9 Suppl 1: p. S4.

    Google Scholar 

  18. Tsuda, K., H. Shin, and B. Scholkopf, Fast protein classification with multiple networks. Bioinformatics, 2005. 21 Suppl 2: p. ii59-65.

    Google Scholar 

  19. Murali, T.M., C.J. Wu, and S. Kasif, The art of gene function prediction. Nat Biotechnol, 2006. 24(12): p. 1474–5; author reply 1475–6.

    Google Scholar 

  20. Deng, M., T. Chen, and F. Sun, An integrated probabilistic model for functional prediction of proteins. J Comput Biol, 2004. 11(2–3): p. 463–75.

    Google Scholar 

  21. Mostafavi, S. and Q. Morris, Fast Integration of Heterogeneous Data Sources for Predicting Gene Function with Limited Annotation. Bioinformatics, 2010.

    Google Scholar 

  22. Lanckriet, G.R., et al., A statistical framework for genomic data fusion. Bioinformatics, 2004. 20(16): p. 2626–35.

    Google Scholar 

  23. Pena-Castillo, L., et al., A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol, 2008. 9 Suppl 1: p. S2.

    Google Scholar 

  24. Pavlidis, P., et al., Learning gene functional classifications from multiple data types. J Comput Biol, 2002. 9(2): p. 401–11.

    Google Scholar 

  25. Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005. 4: p. Article17.

    Google Scholar 

  26. Yona, G., et al., Effective similarity measures for expression profiles. Bioinformatics, 2006. 22(13): p. 1616–22.

    Google Scholar 

  27. Warde-Farley, D., et al., The GeneMANIA ­prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010. Accepted(Webserver Issue).

    Google Scholar 

  28. Costanzo, M., et al., The genetic landscape of a cell. Science, 2010. 327(5964): p. 425–31.

    Google Scholar 

  29. Tong, A.H., et al., Global mapping of the yeast genetic interaction network. Science, 2004. 303(5659): p. 808–13.

    Google Scholar 

  30. Weirauch, M.T., et al., Information-based methods for predicting gene function from systematic gene knock-downs. BMC Bioinformatics, 2008. 9: p. 463.

    Google Scholar 

  31. Hishigaki, H., et al., Assessment of prediction accuracy of protein function from protein--protein interaction data. Yeast, 2001. 18(6): p. 523–31.

    Google Scholar 

  32. Schwikowski, B., P. Uetz, and S. Fields, A network of protein-protein interactions in yeast. Nat Biotechnol, 2000. 18(12): p. 1257–61.

    Google Scholar 

  33. Zhou, D., et al., Learning with Local and Global Consistency, in Neural Information Processing Systems. 2003, MIT Press: Vancouver, BC, Canada.

    Google Scholar 

  34. Weston, J., et al., Protein ranking: from local to global structure in the protein similarity network. Proc Natl Acad Sci USA, 2004. 101(17): p. 6559–63.

    Google Scholar 

  35. Hu, P., H. Jiang, and A. Emili, Predicting protein functions by relaxation labelling protein interaction network. BMC Bioinformatics, 2010. 11 Suppl 1: p. S64.

    Google Scholar 

  36. Bengio, Y., O. Delalleau, and N. Le Roux, Label Propagation and Quadratic Criterion, in Semi-Supervised Learning, O. Chapelle, B. Scholkopf, and A. Zien, Editors. 2006, MIT Press.

    Google Scholar 

  37. Chung, F., Spectral Graph Theory. Number 92 in CBMS Regional Conference Series in Mathematics. 1999: American Mathematical Society.

    Google Scholar 

  38. Vazquez, A., et al., Global protein function prediction from protein-protein interaction networks. Nat Biotechnol, 2003. 21(6): p. 697–700.

    Google Scholar 

  39. Karaoz, U., et al., Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA, 2004. 101(9): p. 2888–93.

    Google Scholar 

  40. Fraser, A.G. and E.M. Marcotte, A probabilistic view of gene function. Nat Genet, 2004. 36(6): p. 559–64.

    Google Scholar 

  41. Lee, I., et al., A probabilistic functional network of yeast genes. Science, 2004. 306(5701): p. 1555–8.

    Google Scholar 

  42. Myers, C.L. and O.G. Troyanskaya, Context-sensitive data integration and prediction of ­biological networks. Bioinformatics, 2007. 23(17): p. 2322–30.

    Google Scholar 

  43. Huttenhower, C., et al., Exploring the human genome with functional maps. Genome Res, 2009. 19(6): p. 1093–106.

    Google Scholar 

  44. Noble, W.S. and A. Ben-Hur, Integrating Information for Protein Function Prediction, in Bioinformatics-From Genomes to Therapies, T. Lengauer, Editor. 2007, Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany.

    Google Scholar 

  45. Song, J. and M. Singh, How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics, 2009. 25(23): p. 3143–50.

    Google Scholar 

  46. Myers, C.L., et al., Finding function: evaluation methods for functional genomic data. BMC Genomics, 2006. 7: p. 187.

    Google Scholar 

  47. Zhu, X., J. Lafferty, and Z. Ghahramani. Semi-supervised learning using Gaussian fields and harmonic functions. in International Conference on Machine Learning. 2003. Washington DC, USA.

    Google Scholar 

  48. Lewis, D.P., T. Jebara, and W.S. Noble, Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics, 2006. 22(22): p. 2753–60.

    Google Scholar 

  49. Warde-Farley, D., et al., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010. 38 Suppl: p. W214–20.

    Google Scholar 

  50. Alexeyenko, A. and E.L. Sonnhammer, Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res, 2009. 19(6): p. 1107–16.

    Google Scholar 

  51. von Mering, C., et al., STRING: known and predicted protein-protein associations, ­integrated and transferred across organisms. Nucleic Acids Res, 2005. 33(Database issue): p. D433–7.

    Google Scholar 

  52. Guan, Y., et al., A genomewide functional ­network for the laboratory mouse. PLoS Comput Biol, 2008. 4(9): p. e1000165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quaid Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mostafavi, S., Goldenberg, A., Morris, Q. (2011). Predicting Node Characteristics from Molecular Networks. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics