Skip to main content

Analyzing p53 Regulated DNA Damage Checkpoints by Flow Cytometry

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 782))

  • 1816 Accesses

Abstract

The most critical feature of the cellular response to DNA damage is the ability of the cell to pause and repair the damage so that detrimental mutations will not be passed along to future generations of cells. The cell cycle of mammalian cells is equipped with checkpoints that can prevent cell cycle progression. Cells can either be arrested before replication of the DNA when the cells have a 2 N amount of DNA or after replication and prior to cell mitosis when the cells have a 4 N amount of DNA. Flow cytometry is a standard technique that is used to ‘sort’ cells based on their DNA content. It uses the principles of light scattering, light excitation, and emission of fluorochrome molecules to generate data about individual cells. The cells are fixed and permeabilized so that the DNA can be stained with a fluorescent dye. Cells that have a 2 N amount of DNA can be separated from cells with a 4 N amount of DNA. Using this technique, changes in the profile of the G1, S, and G2/M phases of the cell cycle are readily seen after DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwell, L. H., and Weinert, T. A. (1989) Checkpoints: controls that ensure the order of cell cycle events, Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  2. Paulovich, A. G., Toczyski, D. P., and Hartwell, L. H. (1997) When checkpoints fail, Cell 88, 315–321.

    Article  PubMed  CAS  Google Scholar 

  3. Finlay, C. A., Hinds, P. W., and Levine, A. J. (1989) The p53 proto-oncogene can act as a suppressor of transformation, Cell 57, 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  4. Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein, B. (1991) Identification of p53 as a sequence-specific DNA-binding protein, Science 252, 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  5. Pietenpol, J. A., Tokino, T., Thiagalingam, S., el-Deiry, W. S., Kinzler, K. W., and Vogelstein, B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53, Proc Natl Acad Sci USA 91, 1998–2002.

    Article  PubMed  CAS  Google Scholar 

  6. Burns, T. F., and El-Deiry, W. S. (1999) The p53 pathway and apoptosis, J Cell Physiol 181, 231–239.

    Article  PubMed  CAS  Google Scholar 

  7. Bargonetti, J., and Manfredi, J. J. (2002) Multiple roles of the tumor suppressor p53, Curr Opin Oncol 14, 86–91.

    Article  PubMed  CAS  Google Scholar 

  8. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression, Cell 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  9. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases, Cell 75, 805–816.

    Article  PubMed  CAS  Google Scholar 

  10. Waldman, T., Kinzler, K. W., and Vogelstein, B. (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells, Cancer Res 55, 5187–5190.

    PubMed  CAS  Google Scholar 

  11. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA, Nature 369, 574–578.

    Article  PubMed  CAS  Google Scholar 

  12. Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R. (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts, Proc Natl Acad Sci USA 92, 8493–8497.

    Article  PubMed  CAS  Google Scholar 

  13. Flatt, P. M., Tang, L. J., Scatena, C. D., Szak, S. T., and Pietenpol, J. A. (2000) p53 regulation of G(2) checkpoint is retinoblastoma protein dependent, Mol Cell Biol 20, 4210–4223.

    Article  PubMed  CAS  Google Scholar 

  14. Matsuoka, S., Huang, M., and Elledge, S. J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science 282, 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, W. R., DePrimo, S. E., Agarwal, A., Agarwal, M. L., Schonthal, A. H., Katula, K. S., and Stark, G. R. (1999) Mechanisms of G2 arrest in response to overexpression of p53, Mol Biol Cell 10, 3607–3622.

    PubMed  CAS  Google Scholar 

  16. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage, Science 282, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  17. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage, Nature 401, 616–620.

    Article  PubMed  CAS  Google Scholar 

  18. Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71, 587–597.

    Article  PubMed  CAS  Google Scholar 

  19. Malkin, D. (1993) p53 and the Li-Fraumeni syndrome, Cancer Genet Cytogenet 66, 83–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dana Lukin for contributing figures from his PhD dissertation. The authors are supported by grants from the National Cancer Institute (P01 CA080058, R01 CA125741, and R01 CA086001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Manfredi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Resnick-Silverman, L., Manfredi, J.J. (2011). Analyzing p53 Regulated DNA Damage Checkpoints by Flow Cytometry. In: Li, W. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 782. Humana Press. https://doi.org/10.1007/978-1-61779-273-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-273-1_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-272-4

  • Online ISBN: 978-1-61779-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics