Skip to main content

Association Mapping

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

Association mapping seeks to identify marker alleles present at significantly different frequencies in cases carrying a particular disease or trait compared with controls. Genome-wide association studies are increasingly replacing candidate gene-based association studies for complex diseases, where a number of loci are likely to contribute to disease risk and the effect size of each particular risk allele is typically modest or low. Good study design is essential to the success of an association study, and factors such as the heritability of the disease under investigation, the choice of controls, statistical power, multiple testing and whether the association can be replicated need to be considered before beginning. Likewise, thorough quality control of the genotype data needs to be undertaken prior to running any association analyses. Finally, it should be kept in mind that a significant genetic association is not proof positive that a particular genetic locus causes a disease, but rather an important first step in discovering the genetic variants underlying a complex disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laird, N. M., and Lange, C. (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7, 385–394.

    Article  PubMed  CAS  Google Scholar 

  2. Benyamin, B., Visscher, P. M., and McRae A. F. (2009) Family-based genome-wide association studies. Pharmacogenomics 10, 181–190.

    Article  PubMed  CAS  Google Scholar 

  3. Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106, 9362–9367.

    Article  PubMed  CAS  Google Scholar 

  4. McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., and Hirschhorn, J. N. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9, 356–369.

    Article  PubMed  CAS  Google Scholar 

  5. Visscher, P. M., and Montgomery, G. W. (2009) Genome-wide association studies and human disease: from trickle to flood. JAMA 302, 2028–2029.

    Article  PubMed  CAS  Google Scholar 

  6. Zondervan, K. T., Cardon L. R., and Kennedy, S. H. (2002) What makes a good case-control study? Design issues for complex traits such as endometriosis. Hum Reprod 17, 1415–1423.

    Article  PubMed  Google Scholar 

  7. Hirschhorn, J. N., and Daly, M. J. (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6, 95–108.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, W. Y., Barratt, B. J., Clayton, D. G., and Todd, J. A. (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6, 109–118.

    Article  PubMed  CAS  Google Scholar 

  9. Pettersson, F. H., Anderson, C. A., Clarke, G. M., Barrett, J. C., Cardon, L. R., Morris, A. P., and Zondervan, K. T. (2009) Marker selection for genetic case-control association studies. Nat Protoc 4, 743–752.

    Article  PubMed  CAS  Google Scholar 

  10. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.

    Article  Google Scholar 

  11. Balding, D. J. (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7, 781–791.

    Article  PubMed  CAS  Google Scholar 

  12. Pearson, T. A., and Manolio, T. A. (2008) How to interpret a genome-wide association study. JAMA 299, 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  13. Kraft, P., Zeggini, E., and Ioannidis, J. P. (2009) Replication in genome-wide association studies. Stat Sci 24, 561–573.

    Article  PubMed  Google Scholar 

  14. Zhuang, J. J., Zondervan, K., Nyberg, F., Harbron, C., Jawaid, A., Cardon, L. R., Barratt, B. J., and Morris, A. P. (2010) Optimizing the power of genome-wide association studies by using publicly available reference samples to expand the control group. Genet Epidemiol 34, 319–326.

    Article  PubMed  Google Scholar 

  15. Cardon, L. R., and Palmer, L. J. (2003) Population stratification and spurious allelic association. Lancet 361, 598–604.

    Article  PubMed  Google Scholar 

  16. Purcell, S., Cherny, S. S., and Sham, P. C. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, D., Haynes, C., Blumenfeld, J., and Finch, S. J. (2005) PAWE-3D: visualizing power for association with error in case-control genetic studies of complex traits. Bioinformatics 21, 3935–3937.

    Article  PubMed  CAS  Google Scholar 

  18. Skol, A. D., Scott, L. J., Abecasis, G. R., and Boehnke, M. (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31, 776–788.

    Article  PubMed  Google Scholar 

  19. Cardon, L. R., and Bell, J. I. (2001) Association study designs for complex diseases. Nat Rev Genet 2, 91–99.

    Article  PubMed  CAS  Google Scholar 

  20. Nyholt, D. R. (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74, 765–769.

    Article  PubMed  CAS  Google Scholar 

  21. Dudbridge, F., and Gusnanto, A. (2008) Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 32, 227–234.

    Article  PubMed  Google Scholar 

  22. Pe’er, I., Yelensky, R., Altshuler, D., and Daly, M. J. (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32, 381–385.

    Article  PubMed  Google Scholar 

  23. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., and Golani, I. (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125, 279–284.

    Article  PubMed  CAS  Google Scholar 

  24. Storey, J. D., and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100, 9440–9445.

    Article  PubMed  CAS  Google Scholar 

  25. Barrett, J.C., Fry, B., Maller, J., and Daly, M. J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.

    Article  PubMed  CAS  Google Scholar 

  26. Pettersson, F., Morris, A. P., Barnes, M. R., and Cardon, L. R. (2008) Goldsurfer2 (Gs2): a comprehensive tool for the analysis and visualization of genome wide association studies. BMC Bioinformatics 9, 138.

    Article  PubMed  Google Scholar 

  27. Kraft, P. (2008) Curses—winner’s and otherwise – in genetic epidemiology. Epidemiology 19, 649–651.

    Article  PubMed  Google Scholar 

  28. Aulchenko, Y. S., Ripke, S., Isaacs, A., and van Duijn, C. M. (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296.

    Article  PubMed  CAS  Google Scholar 

  29. Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P. (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39, 906–913.

    Article  PubMed  CAS  Google Scholar 

  30. Sole, X., Guino, E., Valls, J., Iniesta, R., and Moreno, V. (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22, 1928–1929.

    Article  PubMed  CAS  Google Scholar 

  31. Purcell, S., Neale, B., Todd-Brown, K., et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575.

    Article  PubMed  CAS  Google Scholar 

  32. Price, A. L., Patterson, N. J., Plenge, R. M., et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909.

    Article  PubMed  CAS  Google Scholar 

  33. Ge, D., Zhang, K., Need, A. C., et al. (2008) WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 18, 640–643.

    Article  PubMed  CAS  Google Scholar 

  34. Li, Y., Willer, C. J., Sanna, S. and Abecasis, G. R. (2009) Genotype Imputation. Ann Rev Genomics Hum Genet 10, 387–406.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant W. Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Painter, J.N., Nyholt, D.R., Montgomery, G.W. (2011). Association Mapping. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics