Skip to main content

RNA Structure Prediction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

The prediction of RNA structure can be a first important step for the functional characterization of novel ncRNAs. Especially for the very meaningful secondary structure, there is a multitude of computational prediction tools. They differ not only in algorithmic details and the underlying models but also in what exactly they are trying to predict. This chapter gives an overview of different programs that aim to predict RNA secondary structure. We will introduce the ViennaRNA software package and web server as a solution that implements most of the varieties of RNA secondary structure prediction that have been published over the years. We focus on algorithms going beyond the mere prediction of a static structure.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zuker, M., Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9, 133–148.

    Article  PubMed  CAS  Google Scholar 

  2. Eddy, S., Durbin, R. (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22, 2079–2088.

    Article  PubMed  CAS  Google Scholar 

  3. McCaskill, J. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

    Article  PubMed  CAS  Google Scholar 

  4. Do, C., Woods, D., Batzoglou, S. (2006) Contrafold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, 90–98.

    Article  Google Scholar 

  5. Sato, K., Hamada, M., Asai, K., Mituyama, T. (2009) Centroidfold: a web server for RNA secondary structure prediction. Nucleic Acids Res 37(Web Server issue), 277–2780.

    Article  Google Scholar 

  6. Chan, C., Lawrence, C., Ding, Y. (2005) Structure clustering features on the sfold web server. Bioinformatics 21, 3926–3928.

    Article  PubMed  CAS  Google Scholar 

  7. Wuchty, S., Fontana, W., Hofacker, I., Schuster, P. (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165.

    Article  PubMed  CAS  Google Scholar 

  8. Mathews, D., Sabina, J., Zuker, M., Turner, D. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.

    Article  PubMed  CAS  Google Scholar 

  9. Tafer, H., Ameres, S., Obernosterer, G., et al. (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26, 578–583.

    Article  PubMed  CAS  Google Scholar 

  10. Gruber, A., Lorenz, R., Bernhart, S., et al. (2008) The Vienna RNA websuite. Nucleic Acids Res 36(Web Server issue), 70–74.

    Article  Google Scholar 

  11. Andronescu, M., Condon, A., Hoos, H., et al. (2007) Efficient parameter estimation for RNA secondary structure prediction. Bioinformatics 23, 19–28.

    Article  Google Scholar 

  12. Katoh, K., Kuma, K., Toh, H., Miyata, T. (2005) Mafft version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511–518.

    Article  PubMed  CAS  Google Scholar 

  13. Larkin, M., Blackshields, G., Brown, N., et al. (2007) Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  14. Markham, N., Zuker, M. (2008) Unafold: software for nucleic acid folding and hybridization. Methods Mol Biol 453, 3–31.

    Article  PubMed  CAS  Google Scholar 

  15. Mathews, D., Disney, M., Childs, J., et al. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101, 7287–7292.

    Article  PubMed  CAS  Google Scholar 

  16. Torarinsson, E., Lindgreen, S. (2008) War: web server for aligning structural RNAs. Nucleic Acids Res 36(Web Server issue), 79–84.

    Article  Google Scholar 

  17. Flamm, C., Hofacker, I.L. (2008) Beyond energy minimization: approaches to the kinetic folding of RNA. Monatsh. f. Chemie 139, 447–457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan H. Bernhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bernhart, S.H. (2011). RNA Structure Prediction. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics