Skip to main content

High Resolution Imaging of Immunoglobulin G Antibodies and Other Biomolecules Using Amplitude Modulation Atomic Force Microscopy in Air

  • Protocol
  • First Online:
Atomic Force Microscopy in Biomedical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 736))

Abstract

The atomic force microscope (AFM) is a very versatile tool for studying biological samples at ­nanometre-scale resolution. The resolution one achieves depends on many factors, including the sample properties, the imaging environment, the AFM tip and cantilever probe characteristics, and the signal detection and feedback control mechanism, to name a few. This chapter describes how to routinely achieve the highest possible spatial resolution on isolated protein molecules on mica surfaces. This is illustrated with Immunoglobulin G antibodies but the methods apply equally well to any other globular multi-subunit protein, as well as other biomolecules. Double-stranded DNA is used as a model sample to illustrate the effects of the force regime in amplitude modulation atomic force microscopy (AM AFM) on the image resolution and contrast. AM control is a widely used technique in biological AFM for reasons which are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G. et al. (1986) Atomic Force Microscope. Physical Review Letters 56, 930–933

    Article  PubMed  Google Scholar 

  2. Alessandrini, A. and Facci, P. (2005) AFM: a versatile tool in biophysics. Measurement Science and Technology 16, 65–92

    Article  Google Scholar 

  3. Tamayo, J. and Garcia, R. (1996) Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy. Langmuir 12 (18), 4430–4435

    Article  CAS  Google Scholar 

  4. Hansma, H.G. and Hoh, J.H. (1994) Biomolecular Imaging with the Atomic Force Microscope. Annual Review of Biophysics and Biomolecular Structure 23, 115–140

    Article  PubMed  CAS  Google Scholar 

  5. Thomson, N.H. et al. (1996) Protein tracking and detection of protein motion using atomic force microscopy. Biophysical Journal 70 (5), 2421–2431

    Article  PubMed  CAS  Google Scholar 

  6. Ostendorf, F. et al. (2008) How flat is an ­air-cleaved mica surface? Nanotechnology 19, 305705–305710

    Article  PubMed  CAS  Google Scholar 

  7. Moreno-Herrero, F. et al. (2003) DNA height in atomic force microscopy. Ultramicroscopy 96, 167–174

    Article  PubMed  CAS  Google Scholar 

  8. Thomson, N.H. (2005) Imaging the substructure of antibodies with tapping-mode AFM in air: the importance of a water layer on mica. Journal of Microscopy 217, 193–199

    Article  PubMed  CAS  Google Scholar 

  9. Garcia, R. and Perez, R. (2002) Dynamic Atomic Force Microscopy Methods. Surface Science Reports 47, 197–301

    Article  CAS  Google Scholar 

  10. Hansma, P.K. et al. (1994) Tapping mode atomic force microscopy in liquids. Applied Physics Letters 64, 1738–1740

    Article  CAS  Google Scholar 

  11. Garcia, R. and San Paulo, A. (2000) Dynamics of a vibrating tip near or in intermittent ­contact with a surface. Physical Review B 61, 13381–13384

    Article  Google Scholar 

  12. San Paulo, A. and Garcia, R. (2000) High-Resolution Imaging of Antibodies by Tapping-Mode Atomic Force Microscopy: Attractive and Repulsive Tip-Sample Interaction Regimes. Biophysical Journal 78, 1599–1605

    Article  PubMed  CAS  Google Scholar 

  13. Thomson, N.H. (2005) The substructure of immunoglobulin G resolved to 25 kDA using amplitude modulation in air. Ultramicroscopy 105, 1003–1110

    Article  Google Scholar 

  14. Abou-Saleh, R.H. et al. (2009) Nanoscale Probing Reveals that Reduced Stiffness of Clots from Fibrinogen Lacking 42 N-Terminal Bβ-Chain Residues Is Due to the Formation of Abnormal Oligomers. Biophysical Journal 96 (6), 2415–2427

    Article  PubMed  CAS  Google Scholar 

  15. Quate, C.F. (1994) The AFM as a tool for surface imaging. Surface Science 299/300, 980–995

    Article  Google Scholar 

  16. Urry, D.W. (1988) Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics Journal of Protein Chemistry 7 (1), 1–34

    Article  PubMed  CAS  Google Scholar 

  17. Fukuma, T. et al. (2005) True molecular resolution in liquid by frequency modulation atomic force microscopy. Applied Physics Letters 86, 193108–193110

    Article  Google Scholar 

  18. Y. Maeda et al. (1999) Observation of single- and double-stranded DNA using non-contact atomic force microscopy. Applied Surface Science 140, 400–405

    Article  CAS  Google Scholar 

  19. J. Martinez et al. (2005) Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam. Nanotechnology 16, 2493–2496

    Article  CAS  Google Scholar 

  20. Patil, S. et al. (2007) Force microscopy ­imaging of individual protein molecules with sub-pico Newton force sensitivity. Journal of Molecular Recognition 20, 516–523

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, Y. et al. (1996) Imaging Biological Structures with the Cryo Atomic Force Microscope. Biophysical Journal 71, 2168–2176

    Article  PubMed  CAS  Google Scholar 

  22. Sitong Sheng et al. (2006) Localization of Linker Histone in Chromatosomes by Cryo-Atomic Force Microscopy. Biophysical Journal 91 (4), L35–L37

    Google Scholar 

  23. Gross, L. et al. (2009) The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 325, 1110–1114

    Article  PubMed  CAS  Google Scholar 

  24. Ostendorf, F. et al. (2009) Evidence for Potassium Carbonate Crystallites on Air-Cleaved Mica Surfaces. Langmuir 25 (18), 10764–10767

    Article  PubMed  CAS  Google Scholar 

  25. Christenson, H.K. and Israelachvili, J.N. (1987) Growth of Ionic Crystallites on Exposed Surfaces. Journal of colloid and interface science 17, 576–577

    Article  Google Scholar 

  26. Christenson, H.K. (1993) Adhesion and surface energy of mica in air and water. Journal of Physical Chemistry 97, 12034–12041

    Article  CAS  Google Scholar 

  27. Zitzler, L. et al. (2002) Capillary forces in tapping mode atomic force microscopy. Physical Review B 66, 155436–155443

    Article  Google Scholar 

  28. Martinez, N. and Garcia, R. (2006) Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17, 167–172

    Article  Google Scholar 

  29. Cleveland, J.P. et al. (1998) Energy ­dissipation in tapping-mode atomic force ­microscopy. Applied Physics Letters 72 (20), 2613–2615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anthony Maxwell for kindly providing us with monoclonal IgG antibodies against the A-subunit of DNA gyrase. SS is funded through a Doctoral Training Grant of the BBSRC. We acknowledge the University of Leeds for strategic investment in AFM infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil H. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Santos, S., Thomson, N.H. (2011). High Resolution Imaging of Immunoglobulin G Antibodies and Other Biomolecules Using Amplitude Modulation Atomic Force Microscopy in Air. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics