Skip to main content

Imaging and Interrogating Native Membrane Proteins Using the Atomic Force Microscope

  • Protocol
  • First Online:
Atomic Force Microscopy in Biomedical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 736))

Abstract

Membrane proteins exist in a lipid bilayer and provide for cell–cell communication, transport solutes, and convert energies. Detergents are used to extract membrane proteins and keep them in solution for purification and subsequent analyses. The atomic force microscope (AFM) is a powerful tool for imaging and manipulating membrane proteins in their native state without the necessity to solubilize them. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. Superb images of native membranes have been recorded, and a quantitative interpretation of the data acquired using the AFM tip has become possible. In addition, multifunctional probes to simultaneously acquire information on the topography and electrical properties of membrane proteins have been produced. This progress is discussed here and fosters expectations for future developments and applications of AFM and single-molecule force spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscopy. Phys. Rev. Lett. 56:930–933.

    Article  PubMed  Google Scholar 

  2. Drake, B., C. B. Prater, A. L. Weisenhorn, S. A. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma, and P. K. Hansma. 1989. Imaging crystals, polymers and processes in water with the atomic force microscope. Science 243:1586–1589.

    Article  PubMed  CAS  Google Scholar 

  3. Hoh, J. H., R. Lal, S. A. John, J. P. Revel, and M. F. Arnsdorf. 1991. Atomic force microscopy and dissection of gap junctions. Science 253:1405–1408.

    Article  PubMed  CAS  Google Scholar 

  4. Buzhynskyy, N., J. F. Girmens, W. Faigle, and S. Scheuring. 2007. Human cataract lens membrane at subnanometer resolution. J Mol Biol 374:162–169.

    Article  PubMed  CAS  Google Scholar 

  5. Czajkowsky, D. M., E. M. Hotze, Z. Shao, and R. K. Tweten. 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. Embo J 23:3206–3215.

    Article  PubMed  CAS  Google Scholar 

  6. Kienberger, F., H. Mueller, V. Pastushenko, and P. Hinterdorfer. 2004. Following single antibody binding to purple membranes in real time. EMBO Rep 5:579–583.

    Article  PubMed  CAS  Google Scholar 

  7. Müller, D. J., and A. Engel. 2007. Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197.

    Article  PubMed  Google Scholar 

  8. Müller, D. J., G. M. Hand, A. Engel, and G. E. Sosinsky. 2002. Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO Journal 21:3598–3607.

    Article  PubMed  Google Scholar 

  9. Müller, D. J., and A. Engel. 1999. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285:1347–1351.

    Article  PubMed  Google Scholar 

  10. Engel, A., and H. E. Gaub. 2008. Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148.

    Article  PubMed  CAS  Google Scholar 

  11. Kedrov, A., H. Janovjak, K. T. Sapra, and D. J. Müller. 2007. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu Rev Biophys Biomol Struct 36:233–260.

    Article  PubMed  CAS  Google Scholar 

  12. Hoogenboom, B. W., H. J. Hug, Y. Pellmont, S. Martin, P. L. T. M. Frederix, D. Fotiadis, and A. Engel. 2006. Quantitative dynamic-mode scanning force microscopy in liquid. Appl. Phys. Lett. 88:193109.

    Article  Google Scholar 

  13. Nikaido, H., and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1–32.

    PubMed  CAS  Google Scholar 

  14. Schindler, H., and J. P. Rosenbusch. 1978. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. USA 75:3751–3755.

    Article  PubMed  CAS  Google Scholar 

  15. Brunen, M., and H. Engelhardt. 1993. Asymmetry of orientation and voltage gating of the Acidovorax-delafieldii porin Omp34 in lipid bilayers. Eur. J. Biochem. 212:129–135.

    Article  PubMed  CAS  Google Scholar 

  16. Sen, K., J. Hellman, and H. Nikaido. 1988. Porin channels in intact cells of Escherichia coli are not affected by donnan potentials across the outer membrane. J. Biol. Chem. 263:1182–1187.

    PubMed  CAS  Google Scholar 

  17. Todt, J. C., W. J. Rocque, and E. J. McGroarty. 1992. Effects of pH on bacterial porin function. Biochem. 31:10471–10478.

    Article  CAS  Google Scholar 

  18. Delcour, A. H. 1997. Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol Lett 151:115–123.

    Article  PubMed  CAS  Google Scholar 

  19. Cowan, S. W., T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R. A. Pauptit, J. N. Jansonius, and J. P. Rosenbusch. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.

    Article  PubMed  CAS  Google Scholar 

  20. Schirmer, T. 1998. General and specific porins from bacterial outer membranes. J. Stuct. Biol. 121:101–109.

    Article  CAS  Google Scholar 

  21. Schulz, G. 1993. Bacterial porins: structure and function. Curr. Opin. Cell Biol. 5:701–707.

    Article  PubMed  CAS  Google Scholar 

  22. Phale, R. S., T. Schirmer, A. Prilipov, K.-L. Lou, A. Hardmeyer, and J. Rosenbusch. 1997. Voltage gating of Escherichia coli porin channels: role of the constriction loop. Proc. Natl. Acad. Sci. USA 94:6741–6745.

    Article  PubMed  CAS  Google Scholar 

  23. Schabert, F. A., C. Henn, and A. Engel. 1995. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268:92–94.

    Article  PubMed  CAS  Google Scholar 

  24. Fotiadis, D., S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller. 2002. Imaging and manipulation of biological structures with the AFM. Micron 33:385–397.

    Article  PubMed  CAS  Google Scholar 

  25. Müller, D. J., D. Fotiadis, S. Scheuring, S. A. Müller, and A. Engel. 1999. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy. Biophys J 76:1101–1111.

    Article  PubMed  Google Scholar 

  26. Müller, D. J., and A. Engel. 1997. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 73:1633–1644.

    Article  PubMed  Google Scholar 

  27. Israelachvili, J. 1991. Intermolecular & surface forces. Academic Press Limited, London.

    Google Scholar 

  28. Müller, D. J., M. Amrein, and A. Engel. 1997. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188.

    Article  PubMed  Google Scholar 

  29. Karshikoff, A., V. Spassov, S. W. Cowan, R. Ladenstein, and T. Schirmer. 1994. Electrostatic properties of two porin channels from Escherichia coli. J. Mol. Biol. 240:372–384.

    Article  PubMed  CAS  Google Scholar 

  30. Andersen, C., B. Schiffler, A. Charbit, and R. Benz. 2002. PH-induced collapse of the extracellular loops closes Escherichia coli maltoporin and allows the study of asymmetric sugar binding. J Biol Chem 277:41318–41325.

    Article  PubMed  CAS  Google Scholar 

  31. Yildiz, O., K. R. Vinothkumar, P. Goswami, and W. Kuhlbrandt. 2006. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. Embo J 25:3702–3713.

    Article  PubMed  CAS  Google Scholar 

  32. Mari, S. A., S. Koster, C. A. Bippes, O. Yildiz, W. Kuhlbrandt, and D. J. Müller. 2010. pH-induced conformational change of the beta-barrel-forming protein OmpG reconstituted into native E. coli lipids. J Mol Biol 396:610–616.

    Article  PubMed  CAS  Google Scholar 

  33. Mannella, C. A. 1986. Mitochondrial outer membrane channel (VDAC, porin) two-dimensional crystals from Neurospora. Methods Enzymol 125:595–610.

    Article  PubMed  CAS  Google Scholar 

  34. Hiller, S., and G. Wagner. 2009. The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Curr Opin Struct Biol 19:396–401.

    Article  PubMed  CAS  Google Scholar 

  35. Hoogenboom, B. W., K. Suda, A. Engel, and D. Fotiadis. 2007. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255.

    Article  PubMed  CAS  Google Scholar 

  36. Goncalves, R. P., N. Buzhynskyy, V. Prima, J. N. Sturgis, and S. Scheuring. 2007. Supramolecular assembly of VDAC in native mitochondrial outer membranes. J Mol Biol 369:413–418.

    Article  PubMed  CAS  Google Scholar 

  37. Frederix, P. L., P. D. Bosshart, and A. Engel. 2009. Atomic force microscopy of biological membranes. Biophys J 96:329–338.

    Article  PubMed  CAS  Google Scholar 

  38. Frederix, P. L. T. M., P. D. Bosshart, T. Akiyama, M. Chami, M. R. Gullo, J. J. Blackstock, K. Dooleweerdt, N. F. de Rooij, U. Staufer, and A. Engel. 2008. Conductive supports for combined AFM-SECM on biological membranes. Nanotechnology 19.

    Google Scholar 

  39. Scheuring, S., D. J. Müller, P. Ringler, J. B. Heymann, and A. Engel. 1999. Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. J Microsc 193:28–35.

    Article  PubMed  CAS  Google Scholar 

  40. Cisneros, D. A., D. J. Müller, S. M. Daud, and J. H. Lakey. 2006. An approach to prepare membrane proteins for single-molecule imaging. Angew Chem Int Ed Engl 45:3252–3256.

    Article  PubMed  CAS  Google Scholar 

  41. Müller, D. J., A. Engel, U. Matthey, T. Meier, P. Dimroth, and K. Suda. 2003. Observing membrane protein diffusion at subnanometer resolution. J Mol Biol 327:925–930.

    Article  PubMed  Google Scholar 

  42. Tanaka, M., and E. Sackmann. 2005. Polymer-supported membranes as models of the cell surface. Nature 437:656–663.

    Article  PubMed  CAS  Google Scholar 

  43. Wagner, M. L., and L. K. Tamm. 2000. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414.

    Article  PubMed  CAS  Google Scholar 

  44. Müller, D., and A. Engel. 2008. Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin in Colloids & Interface Science 13:338–350.

    Article  Google Scholar 

  45. Goncalves, R. P., G. Agnus, P. Sens, C. Houssin, B. Bartenlian, and S. Scheuring. 2006. Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat Methods 3:1007–1012.

    Article  PubMed  CAS  Google Scholar 

  46. Uchihashi, T., M. J. Higgins, S. Yasuda, S. P. Jarvis, S. Akita, Y. Nakayama, and J. E. Sader. 2004. Quantitative force measurements in liquid using frequency modulation atomic force microscopy. Applied Physics Letters 85:3575–3577.

    Article  CAS  Google Scholar 

  47. Fukuma, T., K. Kobayashi, K. Matsushige, and H. Yamada. 2005. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87:034101.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Daniel J. Müller, Dimitrios Fotiadis, and Bart Hoogenboom for providing beautiful topographs and constructive discussions. This work was supported by the Maurice E. Müller Foundation of Switzerland and by the Swiss National Foundation. The used AFM facility was built with contributions from the Swiss University Conference and JPK-Instruments AG, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Engel, A. (2011). Imaging and Interrogating Native Membrane Proteins Using the Atomic Force Microscope. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics