Skip to main content

Application of Full-Length cDNA Resources to Gain-of-Function Technology for Characterization of Plant Gene Function

  • Protocol
  • First Online:
Book cover cDNA Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 729))

Abstract

Generation and characterization of mutants are important for the investigation of gene function. Gain-of-function technology is one of the most useful approaches for the systematic production of mutant resources. Full-length cDNAs have been collected from various plant species and have become important resources for functional genomics. We have developed a novel gain-of-function technology for the identification of gene function using a full-length cDNA library, and this system has been named as FOX hunting system (Full-length cDNA Over-eXpressing gene hunting system). In this system, full-length cDNAs are randomly expressed in Arabidopsis. We also generated rice FOX Arabidopsis lines in which full-length cDNAs from rice were expressed in Arabidopsis, and we demonstrated that gene function derived from heterologous organisms can be analyzed systematically using the FOX hunting approach. In this protocol, we describe the process of generating Arabidopsis mutants expressing rice full-length cDNA libraries and the methods of identifying genes from the isolated mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  2. Seki, M., Narusaka, M., Kamiya, A., Ishida, J., Satou, M., Sakurai, T., Nakajima, M., Enju, A., Akiyama, K., Oono, Y., et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141–145.

    Article  PubMed  Google Scholar 

  3. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., et al. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376–379.

    Article  PubMed  Google Scholar 

  4. Nishiyama, T., Fujita, T., Shin, I. T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., et al. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc. Natl Acad. Sci. U S A 100, 8007–8012.

    Article  PubMed  CAS  Google Scholar 

  5. Ogihara, Y., Mochida, K., Kawaura, K., Murai, K., Seki, M., Kamiya, A., Shinozaki, K., Carninci, P., Hayashizaki, Y., Shin, I. T., et al. (2004) Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characterization by large-scale sequencing of expressed sequence tags. Genes Genet. Syst. 79, 227–232.

    Article  PubMed  Google Scholar 

  6. Nanjo, T., Sakurai, T., Totoki, Y., Toyoda, A., Nishiguchi, M., Kado, T., Igasaki, T., Futamura, N., Seki, M., Sakaki, Y., et al. (2007) Functional annotation of 19,841 Populus nigra full-length enriched cDNA clones. BMC Genomics 8, 448.

    Article  PubMed  Google Scholar 

  7. Sakurai, T., Plata, G., Rodriguez-Zapata, F., Seki, M., Salcedo, A., Toyoda, A., Ishiwata, A., Tohme, J., Sakaki, Y., Shinozaki, K., et al. (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol. 7, 66.

    Article  PubMed  Google Scholar 

  8. Umezawa, T., Sakurai, T., Totoki, Y., Toyoda, A., Seki, M., Ishiwata, A., Akiyama, K., Kurotani, A., Yoshida, T., Mochida, K., et al. (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res. 15, 333–346.

    Article  PubMed  CAS  Google Scholar 

  9. Ralph, S. G., Chun, H. J., Kolosova, N., Cooper, D., Oddy, C., Ritland, C. E., Kirkpatrick, R., Moore, R., Barber, S., Holt, R. A., et al. (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 9, 484.

    Article  PubMed  Google Scholar 

  10. Taji, T., Sakurai, T., Mochida, K., Ishiwata, A., Kurotani, A., Totoki, Y., Toyoda, A., Sakaki, Y., Seki, M., Ono, H., et al. (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol. 8, 115.

    Article  PubMed  Google Scholar 

  11. Sato, K., Shin, I. T., Seki, M., Shinozaki, K., Yoshida, H., Takeda, K., Yamazaki, Y., Conte, M., and Kohara, Y. (2009) Development of 5006 full-length CDNAs in barley: a tool for accessing cereal genomics resources. DNA Res. 16, 81–89.

    Article  PubMed  Google Scholar 

  12. Seki, M., and Shinozaki, K. (2009) Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. J. Plant Res. 122, 355–366.

    Article  PubMed  CAS  Google Scholar 

  13. Ostergaard, L., and Yanofsky, M. F. (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J. 39, 682–696.

    Article  PubMed  CAS  Google Scholar 

  14. Krysan, P. J., Young, J. C., and Sussman, M. R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  15. Ramachandran, S., and Sundaresan, S. (2001) Transposons as tools for functional genomics. Plant Physiol. Biochem. 39, 243–252.

    Article  CAS  Google Scholar 

  16. Ito, T., and Meyerowitz, E. M. (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12, 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  17. Nakazawa, M., Yabe, N., Ichikawa, T., Yamamoto, Y. Y., Yoshizumi, T., Hasunuma, K., and Matsui, M. (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 25, 213–221.

    Article  PubMed  CAS  Google Scholar 

  18. Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  19. Tani, H., Chen, X., Nurmberg, P., Grant, J. J., SantaMaria, M., Chini, A., Gilroy, E., Birch, P. R., and Loake, G. J. (2004) Activation tagging in plants: a tool for gene discovery. Funct. Integr. Genomics 4, 258–266.

    Article  PubMed  CAS  Google Scholar 

  20. Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E. J., Neff, M. M., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  21. Ichikawa, T., Nakazawa, M., Kawashima, M., Iizumi, H., Kuroda, H., Kondou, Y., Tsuhara, Y., Suzuki, K., Ishikawa, A., Seki, M., et al. (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 48, 974–985.

    Article  PubMed  CAS  Google Scholar 

  22. Breuer, C., Kawamura, A., Ichikawa, T., Tominaga-Wada, R., Wada, T., Kondou, Y., Muto, S., Matsui, M., and Sugimoto, K. (2009) The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell 21, 2307–2322.

    Article  PubMed  CAS  Google Scholar 

  23. Okazaki, K., Kabeya, Y., Suzuki, K., Mori, T., Ichikawa, T., Matsui, M., Nakanishi, H., and Miyagishima, S. Y. (2009) The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell 21, 1769–1780.

    Article  PubMed  CAS  Google Scholar 

  24. Bechtold, N., and Pelletier, G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259–266.

    PubMed  CAS  Google Scholar 

  25. Kondou, Y., Higuchi, M., Takahashi, S., Sakurai, T., Ichikawa, T., Kuroda, H., Yoshizumi, T., Tsumoto, Y., Horii, Y., Kawashima, M., et al. (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J. 57, 883–894.

    Article  PubMed  CAS  Google Scholar 

  26. Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., and Oda, K. (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227, 957–967.

    Article  PubMed  CAS  Google Scholar 

  27. Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., and Oda, K. (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229, 1065–1075.

    Article  PubMed  CAS  Google Scholar 

  28. Kuromori, T., Takahashi, S., Kondou, Y., Shinozaki, K., and Matsui, M. (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol. 50, 1215–1231.

    Article  PubMed  CAS  Google Scholar 

  29. Nakazawa, M., and Matsui, M. (2003) Selection of hygromycin-resistant Arabidopsis seedlings. BioTechniques 34, 28–30.

    PubMed  CAS  Google Scholar 

  30. Du, J., Huang, Y. P., Xi, J., Cao, M. J., Ni, W. S., Chen, X., Zhu, J. K., Oliver, D. J., and Xiang, C. B. (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 56, 653–664.

    Article  PubMed  CAS  Google Scholar 

  31. Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y., and Shinozaki, K. (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15, 707–720.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a Special Coordination Fund for Promoting Science and Technology awarded to Minami Matsui, Kenji Oda, and Hirohiko Hirochika. This study is also supported by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports and Technology of Japan (19710055) to Youichi Kondou and (21780315) to Mieko Higuchi. We thank Dr. Hirofumi Kuroda, Ms. Yoko Horii, and Dr. Yuko Tsumoto (RIKEN Plant Science Center) for technical support. We appreciate the helpful discussions with Dr. Takeshi Yoshizumi (RIKEN Plant Science Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minami Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kondou, Y., Higuchi, M., Ichikawa, T., Matsui, M. (2011). Application of Full-Length cDNA Resources to Gain-of-Function Technology for Characterization of Plant Gene Function. In: Lu, C., Browse, J., Wallis, J. (eds) cDNA Libraries. Methods in Molecular Biology, vol 729. Humana Press. https://doi.org/10.1007/978-1-61779-065-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-065-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-064-5

  • Online ISBN: 978-1-61779-065-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics