Skip to main content

CytoSys: A Tool for Extracting Cell-Cycle-Related Expression Dynamics from Static Data

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 717))

Abstract

Computational models of biological processes are important building blocks in Systems Biology studies. Calibration and validation are two important steps for moving a mathematical model to a computational model. While calibration refers to finding numerical value of the coefficients such as rate constants in a mathematical model, validation refers to verifying that the calibrated model behaves the same as the biological system under previously unseen conditions such as environmental changes (e.g., drug treatment) or mutations. In lieu of direct measurements of rate constants, modeling of the molecular mechanisms that govern biological behaviors may be able to use dynamic expression profiles of reactant biomolecules for calibration. For validation, similar data, obtained under new conditions, are probably better than direct measurements of rate constants. In any case, direct measurement of rate constants is almost always impractical and difficult or impossible. Here, we show a computer-assisted methodology to extract embedded dynamic profiles of cell-cycle proteins from statically sampled, multivariate cytometry data guided by heuristics assembled from canonical cell-cycle knowledge. The methodology is implemented using standard “list mode” cytometry data-processing software followed by CytoSys – a software tool with an easy-to-use graphical interface. We demonstrate the use of CytoSys with a case study of exponentially growing, human erythroleukemia cells and extract the dynamic expression profiles of cyclin A for calibrating an existing deterministic mathematical model of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mesarovic, M.D., Sreenath, S.N. and Keene, J.D. (2004)  Search for organising principles: understanding in systems biology.  IEE Syst. Biol. (Stevenage) 1, 19–27.

    Article  CAS  Google Scholar 

  2. Chen, W.W., Schoeberl, B., Jasper, P.J., et al (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5, 1–19.

    Google Scholar 

  3. Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A. and Yaffe, M.B. (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310, 1646–1653.

    Article  PubMed  CAS  Google Scholar 

  4. Voit, E.O. and Ferreira, A.E. (2000) Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists, first edition. Cambridge University Press, Cambridge.

    Google Scholar 

  5. Burnette, W.N. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate – polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.  Anal. Biochem. 112, 195–203.

    Article  PubMed  CAS  Google Scholar 

  6. Leng, S., McElhaney, J., Walston, J., Xie, D., Fedarko, N. and Kuchel, G. (2008) Elisa and multiplex technologies for cytokine measurement in inflammation and aging research.J. Gerontol. A Biol. Sci. Med. Sci.63, 879–884.

    Article  PubMed  Google Scholar 

  7. Hawley, T.S. and Hawley, R.G. (2004) Methods in Molecular Biology: Flow Cytometry Protocols, second edition. Humana Press, Totowa, vol. 263, pp. 1–424.

    Book  Google Scholar 

  8. Albieri, R., Barberis, M., Chiaradonna, F., Gaglio, D., Milanesi, L., Vanoni, M., Klipp, E. and Alberghina, L. (2009) Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics 10, S16.

    Article  Google Scholar 

  9. Pomerening, J.R., Kim, S.Y. and Ferrell Jr., J.E. (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578.

    Article  PubMed  CAS  Google Scholar 

  10. Gonze, D. and Goldbeter, A. (2001) A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. J. Theor. Biol. 210, 167–186.

    Article  PubMed  CAS  Google Scholar 

  11. Tyson, J.J. and Novak, B. (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis and irreversible transitions. J.Theor. Biol. 210, 249–263.

    Article  PubMed  CAS  Google Scholar 

  12. Obeyesekere, M.N., Tecarro, E. and Lozano, G. (2004) Model predictions of MDM2 mediated cell regulation. Cell Cycle 3, 655–661.

    Article  PubMed  CAS  Google Scholar 

  13. Bai, S., Goodrich, D., Thron, C.D., Tecarro, E. and Obeyesekere, M. (2003) Theoretical and experimental evidence for hysteresis in cell proliferation. Cell Cycle 2, 46–52.

    Article  PubMed  CAS  Google Scholar 

  14. Qu, Z., Weiss, J.N. and MacLellan, W.R. (2003) Regulation of the mammalian cell: a model of the G1-to-S transition. Amer. J. Physiol. Cell Physiol. 284, C349–C367.

    CAS  Google Scholar 

  15. Novak, B. and Tyson, J.J. (2004) A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579.

    Article  PubMed  CAS  Google Scholar 

  16. Swat, M., Kel, A. and Herzel, H. (2004) Bifurcation analysis of the regulation modules of the G(1)/S transition. Bioinformatics 20, 1506–1511.

    Article  PubMed  CAS  Google Scholar 

  17. Haberichter, T., Madge, B., Christopher, R.A., Yoshioka, N., Dhiman, A., Miller, R., Gendelman, R., Aksenov, S.V., Khalil, I.G. and Dowdy, S.F. (2007) A systems biology dynamical model of the mammalian G1 cell cycle progression. Mol. Syst. Biol. 3, 84.

    Article  PubMed  Google Scholar 

  18. Csikasz-Nagy, A., Battogtokh, D., Chen, K.C., Novak, B. and Tyson, J.J. (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys. J. 90, 4361–4379.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B. and Tyson, J.J. (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391.

    PubMed  CAS  Google Scholar 

  20. Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J.J. and Novak, B. (2000) Modeling the fission yeast cell cycle: quantized cycle times in Wee1/Cdc25delta mutant cells. Proc. Natl. Acad. Sci. U.S.A. 97, 7865–7870.

    Article  PubMed  CAS  Google Scholar 

  21. Novak, B., Pataki, Z., Ciliberto, A. and Tyson, J.J. (2001) Mathematical model of the cell division cycle of fission yeast. Chaos 11, 277–286.

    Article  PubMed  CAS  Google Scholar 

  22. Ciliberto, A., Novak, B. and Tyson, J.J. (2003) Mathematical model of the morphogenesis checkpoint in budding yeast. J. Cell Biol. 163, 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B. and Tyson, J.J. (2004) Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862.

    Article  PubMed  CAS  Google Scholar 

  24. Sveiczer, A., Tyson, J.J. and Novak, B. (2004) Modelling the fission yeast cell cycle. Brief. Funct. Genomic Proteomic 2, 298–307.

    Article  PubMed  CAS  Google Scholar 

  25. Qu, Z., MacLellan, W.R. and Weiss,J.N. (2003) Dynamics of the cell cycle:checkpoints, sizers, and timers. Biophys. J. 85, 3600–3611.

    Article  PubMed  CAS  Google Scholar 

  26. Qu, Z., Weiss, J.N. and MacLellan, W.R. (2004) Coordination of cell growth and cell division: a mathematical modeling study. J. Cell Sci. 117, 4199–4207.

    Article  PubMed  CAS  Google Scholar 

  27. Steuer, R. (2004). Effects of stochasticity in model of the cell cycle: from quantized cell cycle times to noise-induced oscillations. J. Theor. Biol. 228, 293–301.

    Article  PubMed  Google Scholar 

  28. Srividhya, J. and Gopinathan, M.S. (2006) A simple time delay model for eukaryotic cell cycle. J. Theor. Biol. 241, 617–627.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, L., Han, Z., MacLellan, W.R., Weiss, J.N. and Qu, Z. (2006) Linking cell division to cell growth in a spatiotemporal model of the cell cycle. J. Theor. Biol. 241, 120–133.

    Article  PubMed  Google Scholar 

  30. Faure, A., Naldi, A., Chaouiya, C. and Thieffry, D. (2006) Dynamical analysis of a generic boolean model of the control of the mammalian cell cycle. Bioinformatics 22, e124–e131.

    Article  PubMed  CAS  Google Scholar 

  31. Melamed, M.R., Lindmo, T. and Mendelsohn, M. L. (1990) Flow Cytometry and Sorting, second edition. Wiley-Liss, New York, pp. 1–824.

    Google Scholar 

  32. Shapiro, H.M. (2003) Practical Flow Cytometry, fourth edition. Wiley-Liss, New York, pp. 1–681 (online at http://www.coulterflow.com).

  33. Watson, J.V. (1991) Introduction to Flow Cytometry. Cambridge Press, Cambridge,pp. 1–443.

    Book  Google Scholar 

  34. Gray, J.W. and Darzynkiewicz, Z. (1987) Techniques in Cell Cycle Analysis. Humana Press, Totowa, pp. 1–407.

    Book  Google Scholar 

  35. Darzynkiewicz, Z., Robinson, J.P. and Crissman, H.A. (2001) Methods in Cell Biology: Cytometry, third edition. Academic Press, New York, vols. 63 & 64.

    Google Scholar 

  36. Jacobberger, J.W. (1991) Intracellular antigen staining: quantitative immunofluorescence. Methods 2, 207–218.

    Article  CAS  Google Scholar 

  37. Jacobberger, J.W. (2000) Flow cytometric analysis of intracellular protein epitopes. In Immunophenotyping, Edited by Stewart, C., Nicholson, K. Wiley-Liss, New York, pp. 361–405.

    Google Scholar 

  38. Jacobberger, J.W. (2001) Stoichiometry of Immunocytochemical Staining Reactions. Methods in Cell Biology: Cytometry, third edition. Academic Press, New York, vol. 63, pp. 271–298.

    Google Scholar 

  39. Jacobberger, J.W., Sramkoski, R.M. and T. Stefan (2011) Multiparameter cell cycle analysis. In Methods in Molecular Biology: Flow Cytometry Protocols, third edition, Edited by Hawley, T.S. and Hawley, R.G., Humana Press, Totowa., vol. 699, pp. 229–249.

    Google Scholar 

  40. Jacobberger, J.W., Sramkoski, R.M., Wormsley, S.B., and Bolton, W.E. (1999) Estimation of kinetic cell cycle-related gene expression in G1 and G2 phases from immunofluorescence flow cytometry data. Cytometry 35, 284–289.

    Article  PubMed  CAS  Google Scholar 

  41. Frisa, P.S. and Jacobberger, J.W. (2009) Cell cycle-related cyclin B1 quantification. PLoS One 4 (9), e7064.

    Article  PubMed  Google Scholar 

  42. Jacobberger, J.W.,  Frisa, P.S.,  Sramkoski, R.M.,  Stefan, T.,  Shults, K.E. and Soni, D.V. (2008) A new biomarker for mitotic cells. Cytometry A 73, 5–15.

    PubMed  Google Scholar 

  43. Goldbeter, A. (1991) A minimal cascade model for the mitotic oscillator involving cyclin and Cdc2 kinase. Proc. Natl. Acad. Sci. U.S.A. 88, 9107–9111.

    Article  PubMed  CAS  Google Scholar 

  44. Lozzio, B.B. and Lozzio, C.B. (1979) Properties and usefulness of the original K-562 human myelogenous leukemia cell line. Leuk. Res. 3, 363–370.

    Article  PubMed  CAS  Google Scholar 

  45. Frisa, P.S. and Jacobberger, J.W. (2010) Cytometry of chromatin bound Mcm6 and PCNA identifies two states in G1 that are separated functionally by the G1 restriction point. BMC Cell Biol. 11, 26.

    Article  PubMed  Google Scholar 

  46. Flow Cytometry Principles: Biology, University of California, Berkeley (Last accessed February 27, 2010, at http://biology.berkeley.edu/crl/flow_cytometry_basic.html).

  47. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Liron, Y., et al (2006) Variability and memory of protein levels in human cell. Nature 444, 643–646.

    Article  PubMed  CAS  Google Scholar 

  48. Ezyfit Toolbox – A Free Curve-Fitting Toolbox for Matlab (Last accessed March 16, 2010, at http://www.mathworks.com/matlabcentral/linkexchange/links/1234-ezyfit-toolbox-a-free-curve-fitting-toolbox-for-matlab).

  49. Lozzio, B.B., Lozzio, C.B., Bamberger, E.G. and Feliu, A.S. (1981) A multipotential leukemia cell line (K-562) of human orgin. Proc. Soc. Exper. Biol. Med. 166, 546–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Avva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Avva, J., Weis, M.C., Soebiyanto, R.P., Jacobberger, J.W., Sreenath, S.N. (2011). CytoSys: A Tool for Extracting Cell-Cycle-Related Expression Dynamics from Static Data. In: Kalyuzhny, A. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 717. Humana Press. https://doi.org/10.1007/978-1-61779-024-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-024-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-023-2

  • Online ISBN: 978-1-61779-024-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics