Skip to main content

Nestin-Driven Green Fluorescent Protein as an Imaging Marker for Nascent Blood Vessels in Mouse Models of Cancer

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 689))

Abstract

A transgenic mouse, in which the regulatory elements of the stem cell marker, nestin drive green fluorescent protein (ND-GFP), expresses GFP in nascent blood vessels. Red fluorescent protein (RFP)-expressing tumors transplanted to nestin-GFP mice enable specific visualization of nascent vessels in the growing tumors. The ND-GFP mouse was also utilized to develop a rapid in vivo/ex vivo fluorescent angiogenesis assay by implanting GelfoamĀ®, a surgical sponge derived from pigskin, which was rapidly vascularized by fluorescent nascent blood vessels. Angiogenesis could be imaged and quantified when stimulated or inhibited by specific compounds in both tumors and GelfoamĀ®. These fluorescent models can be used to study the early events of angiogenesis and to quantitatively determine efficacy of antiangiogenesis compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auerbach, R., Kubai, L., Knighton, D., Folkman, J. (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41, 391ā€“394.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Crum, R., Szabo, S., Folkman, J. (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230, 1375ā€“1378.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Miller, J. W., Stinson, W. G., Folkman, J. (1993) Regression of experimental iris neovascularization with systemic alpha-interferon. Ophthalmology 100, 9ā€“14.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., et al. (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67, 519ā€“528.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Alessandri, G., Raju, K., Gullino, P. M. (1983) Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res 43, 1790ā€“1797.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Deutsch, T. A., Hughes, W. F. (1979) Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Am J Ophthalmol 87, 536ā€“540.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Korey, M., Peyman, G. A., Berkowitz, R. (1977) The effect of hypertonic ointments on corneal alkali burns. Ann Ophthalmol 9, 1383ā€“1387.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Mahoney, J. M., Waterbury, L. D. (1985) Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 4, 531ā€“535.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Li, W. W., Grayson, G., Folkman, J., Dā€™Amore, P. A. (1991) Sustained-release endotoxin. A model for inducing corneal neovascularization. Invest Ophthalmol Vis Sci 32, 2906ā€“2911.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Epstein, R. J., Hendricks, R. L., Stulting, R. D. (1990) Interleukin-2 induces corneal neovascularization in A/J mice. Cornea 9, 318ā€“323.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Gimbrone, M. A., Jr., Cotran, R. S., Leapman, S. B., Folkman, J. (1974) Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 52, 413ā€“427.

    PubMedĀ  Google ScholarĀ 

  12. Fournier, G. A., Lutty, G. A., Watt, S., Fenselau, A., Patz, A. (1981) A corneal micropocket assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci 21, 351ā€“354.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Muthukkaruppan, V., Auerbach, R. (1979) Angiogenesis in the mouse cornea. Science 205, 1416ā€“1418.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Papenfuss, H. D., Gross, J. F., Intaglietta, M., Treese, F. A. (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18, 311ā€“318.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Shan, S., Robson, N. D., Cai, Y., Qiao, T., Li, C. Y., Kontos, C. D., et al. (2004) Responses of vascular endothelial cells to angiogenic signaling are important for tumor cell survival. FASEB J 18, 326ā€“328.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Dewhirst, M., Gross, J., Sim, D., Arnold, P., Boyer, D. (1984) The effect of rate of heating or cooling prior to heating on tumor and normal tissue microcirculatory blood flow. Biorheol 21, 539ā€“558.

    CASĀ  Google ScholarĀ 

  17. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., et al. (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715ā€“725.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Li, C. Y., Shan, S., Huang, Q., Braun, R. D., Lanzen, J., Hu, K., et al. (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92, 143ā€“147.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., Muschel, R. J. (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6, 100ā€“102.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Huang, Q., Shan, S., Braun, R. D., Lanzen, J., Anyrhambatla, G., Kong, G., et al. (1999) Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol 17, 1033ā€“1035.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Cowen, S. E., Bibby, M. C., Double, J. A. (1995) Characterisation of the vasculature within a murine adenocarcinoma growing in different sites to evaluate the potential of vascular therapies. Acta Oncol 34, 357ā€“360.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229ā€“233.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802ā€“805.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Cheng, L., Fu, J., Tsukamoto, A., Hawley, R. G. (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14, 606ā€“609.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., Ward, W. W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32, 1212ā€“1218.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Yang, F., Moss, L. G., Phillips, G. N., Jr. (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14, 1246ā€“1251.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Morin, J., Hastings, J. (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77, 313ā€“318.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Cormack, B., Valdivia, R., Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33ā€“38.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Crameri, A., Whitehorn, E. A., Tate, E., Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14, 315ā€“319.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., Youvan, D. C. (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13, 151ā€“154.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Heim, R., Cubitt, A. B., Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663ā€“664.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., Muzyczka, N. (1996) A ā€˜humanizedā€™ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70, 4646ā€“4654.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., Tsien, R. Y. (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97, 11990ā€“11995.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Fradkov, A. F., Chen, Y., Ding, L., Barsova, E. V., Matz, M. V., Lukyanov, S. A. (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479,127ā€“130.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Chishima, T., Miyagi, Y., Wang, X., Yamaoka, H., Shimada, H., Moossa, A. R. et al. (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57,2042ā€“2047.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Yang, M., Baranov, E., Jiang, P., Sun, F. X., Li, X. M., Li, L., et al. (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97, 1206ā€“1211.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Hoffman, R. M. (2002) Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3, 546ā€“556.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Hoffman, R. M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17, 343ā€“359.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Yang, M., Baranov, E., Li, X. M., Wang, J. W., Jiang, P., Li, L., et al. (2001) Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98, 2616ā€“2621.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Yang, M., Jiang, P., Hoffman, R. M. (2007) Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res 67, 5195ā€“5200.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Yang, M., Baranov, E., Wang, J. W., Jiang, P., Wang, X., Sun, F. X. et al. (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99, 3824ā€“3829.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., Hoffman, R. M. (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100, 9958ā€“9961.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Amoh, Y., Li, L., Yang, M., Moossa, A. R., Katsuoka, K., Penman, S., et al. (2004) Nascent blood vessels in the skin arise from nestin-expressing hair follicle cells. Proc Natl Acad Sci USA 101, 13291ā€“13295.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Amoh, Y., Li, L., Yang, M., Jiang, P., Moossa, A. R., Katsuoka, K., et al. (2005) Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by doxorubicin. Cancer Res 65, 2337ā€“2343.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Amoh, Y., Yang, M., Li, L., Reynoso, J., Bouvet, M., Moossa, A. R., et al. (2005) Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res 65, 5352ā€“5357.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Amoh, Y., Bouvet, M., Li, L., Tsuji, K., Moossa, A. R., Katsuoka, K., et al. (2006) Visualization of nascent tumor angiogenesis in lung and liver metastasis by differential dual-color fluorescence imaging in nestin-linked-GFP mice. Clin Exp Metastasis 23, 315ā€“322.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  47. Amoh, Y., Li, L., Tsuji, K., Moossa, A. R., Katsuoka, K., Hoffman, R. M., et al. (2006) Dual-color imaging of nascent blood vessels vascularizing pancreatic cancer in an orthotopic model demonstrates antiangiogenesis efficacy of gemcitabine. J Surg Res 132, 164ā€“169.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Amoh, Y., Nagakura, C., Maitra, A., Moossa, A. R., Katsuoka, K., Hoffman, R. M., et al. (2006) Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Res 26, 3237ā€“3242.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Ji, Y., Hayashi, K., Amoh, Y., Tsuji, K., Yamauchi, K., Yamamoto, N., et al. (2007) The camptothecin derivative CPT-11 inhibits angiogenesis in a dual-color imageable orthotopic metastatic nude mouse model of human colon cancer. Anticancer Res 27, 713ā€“718.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Hayashi, K., Yamauchi, K., Yamamoto, N., Tsuchiya, H., Tomita, K., Amoh, Y., et al. (2007) Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res 140, 165ā€“170.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Amoh, Y., Li, L., Katsuoka, K., Bouvet, M., Hoffman, R. M. (2007) GFP-expressing vascularization of GelfoamĀ® as a rapid in vivo assay of angiogenesis stimulators and inhibitors. Biotechniques 42, 294ā€“298.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Hayashi, K., Yamauchi, K., Yamamoto, N., Tsuchiya, H., Tomita, K., Bouvet, M., Wessels, J., Hoffman, R. M. (2009) A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Proliferat 42, 75ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Shaked, Y., Ciarrocchi, A., Franco, M., Lee, C. R., Man, S., Cheung, A. M., et al. (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785ā€“1787.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Yang, M., Jiang, P., Sun, F. X., Hasegawa, S., Baranov, E., Chishima, T., Shimada, H., Moossa, A. R., Hoffman, R. M. (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59, 781ā€“786.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Yang, M., Jiang, P., An, Z., Baranov, E., Li, L., Hasegawa, S., Al-Tuwaijri, M., Chishima, T., Shimada, H., Moossa, A. R., Hoffman, R. M. (1999) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5, 3549ā€“3559.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Cruz-Munoz, W., Man, S., Xu, P., Kerbel, R. S. (2008) Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res 68, 4500ā€“4505.

    ArticleĀ  Google ScholarĀ 

  57. Hoffman, R. M. (2009) Comment Re: Preclinical model of spontaneous melanoma metastasis. Cancer Res 69, 719.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Yang, M., Luiken, G., Baranov, E., Hoffman, R. M. (2005) Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques 39, 170ā€“172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Yamauchi, K., Yang, M., Jiang, P., Xu, M., Yamamoto, N., Tsuchiya, H., Tomita, K., Moossa, A. R., Bouvet, M., Hoffman, R. M. (2006) Development of real-time subcellular dynamic multicolor imaging of cancer cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66, 4208ā€“4214.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Mayes, P. A., Dicker, D. T., Liu, Y., El-Deiry, W. S. (2008) Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing. Biotechniques 45, 459ā€“464.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Mansfield, J. R., Gossage, K. W., Hoyt, C. C., Levenson, R. M. (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10, 41207.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Yang, M., Li, L., Jiang, P., Moossa, A. R., Penman, S., Hoffman, R. M. (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100, 14259ā€“14262.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Amoh, Y., Katsuoka, K., Hoffman, R. M. (2008) Color-coded fluorescent protein imaging of angiogenesis: the AngioMouse models. Curr Pharm Des 14, 3810ā€“3819.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

These studies were supported in part by grants CA099258 and CA103563 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Humana Press

About this protocol

Cite this protocol

Hoffman, R.M. (2011). Nestin-Driven Green Fluorescent Protein as an Imaging Marker for Nascent Blood Vessels in Mouse Models of Cancer. In: Chiarini-Garcia, H., Melo, R. (eds) Light Microscopy. Methods in Molecular Biology, vol 689. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-950-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-950-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-949-9

  • Online ISBN: 978-1-60761-950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics