Skip to main content

Protein Structure Modeling

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

The tertiary structure of proteins can reveal information that is hard to detect in a linear sequence. Knowing the tertiary structure is valuable when generating hypothesis and interpreting data. Unfortunately, the gap between the number of known protein sequences and their associated structures is widening. One way to bridge this gap is to use computer-generated structure models of proteins. Here we present concepts and online resources that can be used to identify structural domains in proteins and to create structure models of those domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pacheco, B., Maccarana, M., Goodlett, DR., Malmström, A., Malmström, L. (2008), Identification of the active site of DS-epimerase 1 and requirement of N-glycosylation for enzyme function. J Biol Chem 2009 Jan 16; 284(3): 1741–7.

    Google Scholar 

  2. Berman, H., Henrick, K., Nakamura, H., Markley, JL. (2007), The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35: D301–3 (pmid: 17142228).

    Article  PubMed  CAS  Google Scholar 

  3. Rohl, CA., Strauss, CE., Misura, KM., Baker, D. (2004), Protein structure prediction using Rosetta. Methods Enzymol 383: 66–93. (pmid: 15063647).

    Article  PubMed  CAS  Google Scholar 

  4. Eswar, N., Eramian, D., Webb, B., Shen, MY., Sali, A. (2008), Protein structure modeling with Modeller. Methods Mol Biol 426: 145–59. (pmid: 18542861).

    Article  CAS  Google Scholar 

  5. Pieper, U., Eswar, N., Davis, FP., Braberg, H., Madhusudhan, MS., Rossi, A., Marti-Renom, M., Karchin, R., Webb, BM., Eramian, D., Shen, MY., Kelly, L., Melo, F., Sali, A. (2006), MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34: D291–5. (pmid: 16381869).

    Article  PubMed  CAS  Google Scholar 

  6. Simons, KT., Kooperberg, C., Huang, E., Baker, D. (1997), Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268: 209–25. (pmid: 9149153).

    Article  PubMed  CAS  Google Scholar 

  7. Das, R., Qian, B., Raman, S., Vernon, R., Thompson, J., Bradley, P., Khare, S., Tyka, MD., Bhat, D., Chivian, D., Kim, DE., Sheffler, WH., Malmström, L., Wollacott, AM., Wang, C., Andre, I., Baker, D. (2007), Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 1: 118–28. (pmid: 17894356).

    Article  Google Scholar 

  8. Shortle, D., Simons, KT., Baker, D. (1998), Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95: 11158–62. (pmid: 9736706).

    Article  PubMed  CAS  Google Scholar 

  9. Riffle, M., Malmström, L., Davis, TN. The yeast resource center public data repository. (2005), Nucleic Acids Res 33: D378–82. (pmid: 15608220).

    Article  PubMed  CAS  Google Scholar 

  10. Kim, DE., Chivian, D., Malmström, L., Baker, D. (2005), Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins Suppl 7: 193–200. (pmid: 16187362).

    Google Scholar 

  11. Malmström, L., Riffle, M., Strauss, CE., Chivian, D., Davis, TN., Bonneau, R., Baker, D. (2007), Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. PLoS Biol 5: e76. (pmid: 17373854).

    Article  PubMed  Google Scholar 

  12. Ginalski, K., Elofsson, A., Fischer, D., Rychlewski, L. (2003), 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19: 1015–8. (pmid: 12761065).

    Article  PubMed  CAS  Google Scholar 

  13. Misura, KM., Chivian, D., Rohl, CA., Kim, DE., Baker, D. (2006), Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci USA 103: 5361–6. (pmid: 16567638).

    Article  PubMed  CAS  Google Scholar 

  14. Wetlaufer, DB. (1973), Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci USA 70: 697–701. (pmid: 4351801).

    Article  PubMed  CAS  Google Scholar 

  15. The UniProt Consortium (2008), The Uni­versal Protein Resource (UniProt) 2009. Nucleic Acids Res 2009 Jan; 37(Database issue): D169–74.

    Google Scholar 

  16. Hunter, S., Apweiler, R., Attwood, TK., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, RD., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Mas (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 2009 Jan; 37(Database issue): D211–5.

    Google Scholar 

  17. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, SR., Griffiths-Jones, S., Howe, KL., Marshall, M., Sonnhammer, EL. (2002), The Pfam protein families database. Nucleic Acids Res 30: 276–80. (pmid: 11752314).

    Article  PubMed  CAS  Google Scholar 

  18. Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, CJ., Hofmann, K., Bairoch, A. (2002), The PROSITE database, its status in 2002. Nucleic Acids Res 30: 235–8. (pmid: 11752303).

    Article  PubMed  CAS  Google Scholar 

  19. Gough, J., Chothia, C. (2002), SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 30: 268–72. (pmid: 11752312)

    Article  PubMed  CAS  Google Scholar 

  20. Sayle, RA., Milner-White, EJ. (1995), RASMOL: biomolecular graphics for all. Trends Biochem Sci 20: 374. (pmid: 7482707).

    Article  PubMed  CAS  Google Scholar 

  21. Kim, DE., Chivian, D., Baker, D. (2004), Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32: W526–31. (pmid: 15215442).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Malmström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Malmström, L., Goodlett, D.R. (2010). Protein Structure Modeling. In: Fenyö, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics