Skip to main content
Book cover

Lung Cancer pp 305–330Cite as

Gene-Based Therapies for Lung Cancer

  • Chapter
  • First Online:

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Recent advances in genetics, molecular biology, molecular pharmacology, and biomolecular technology have brought targeted therapeutic opportunities to the forefront of clinical development. Physician and patient communities are highly attracted to lung cancer management opportunities that may involve a personalized approach based on utilizing a unique cancer signal with a target-specific therapy. In this chapter, we will review several advanced clinical developments involving gene-based targeted therapies in lung cancer. Discussion will focus on replacement therapies for abnormal p53 function, FUS1 mediated molecular therapy, antisense technologies, and early developments with RNA interference technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57-70

    PubMed  CAS  Google Scholar 

  2. Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci U S A 99(Suppl 1):2538-2545

    PubMed  Google Scholar 

  3. Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J (2004) Robustness of cellular functions. Cell 118(6):675-685

    PubMed  CAS  Google Scholar 

  4. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A 98(24):13763-13768

    PubMed  CAS  Google Scholar 

  5. Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290(5499):2144-2148

    PubMed  CAS  Google Scholar 

  6. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev 5(2):101-113

    CAS  Google Scholar 

  7. Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99-111

    PubMed  CAS  Google Scholar 

  8. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278(5340):1064-1068

    PubMed  CAS  Google Scholar 

  9. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41-42

    PubMed  CAS  Google Scholar 

  10. Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274(5286):430-432

    PubMed  CAS  Google Scholar 

  11. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181(2):231-239

    PubMed  CAS  Google Scholar 

  12. Fujiwara T, Grimm EA, Mukhopadhyay T, Cai DW, Owen-Schaub LB, Roth JA (1993) A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 53(18):4129-4133

    PubMed  CAS  Google Scholar 

  13. Raycroft L, Wu HY, Lozano G (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249(4972):1049-1051

    PubMed  CAS  Google Scholar 

  14. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322-1326

    PubMed  CAS  Google Scholar 

  15. Kamijo T, Zindy F, Roussel MF et al (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91(5):649-659

    PubMed  CAS  Google Scholar 

  16. Isobe T, Hiyama K, Yoshida Y, Fujiwara Y, Yamakido M (1994) Prognostic significance of p53 and ras gene abnormalities in lung adenocarcinoma patients with stage I disease after curative resection. Jpn J Cancer Res 85(12):1240-1246

    PubMed  CAS  Google Scholar 

  17. Martin HM, Filipe MI, Morris RW, Lane DP, Silvestre F (1992) p53 Expression and prognosis in gastric carcinoma. Int J Cancer 50(6):859-862

    PubMed  CAS  Google Scholar 

  18. Quinlan DC, Davidson AG, Summers CL, Warden HE, Doshi HM (1992) Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res 52(17):4828-4831

    PubMed  CAS  Google Scholar 

  19. Cai DW, Mukhopadhyay T, Roth J (1993) A novel ribozyme for modification of mutated p53 pre-mRNA in non-small cell lung cancer cell lines. In: 3rd antisense workshop, 13 Nov 1993

    Google Scholar 

  20. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA (1994) High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1(1):5-13

    PubMed  Google Scholar 

  21. Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA (1994) Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 86(19):1458-1462

    PubMed  CAS  Google Scholar 

  22. Wang J, Bucana CD, Roth JA, Zhang WW (1995) Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV-p53. Cancer Gene Ther 2(1):9-17

    PubMed  CAS  Google Scholar 

  23. Georges RN, Mukhopadhyay T, Zhang Y, Yen N, Roth JA (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 53(8):1743-1746

    PubMed  CAS  Google Scholar 

  24. Bouvet M, Fang B, Ekmekcioglu S et al (1998) Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther 5(2):189-195

    PubMed  CAS  Google Scholar 

  25. Nielsen LL, Dell J, Maxwell E, Armstrong L, Maneval D, Catino JJ (1997) Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther 4(2):129-138

    PubMed  CAS  Google Scholar 

  26. Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2(10):1665-1671

    PubMed  CAS  Google Scholar 

  27. Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582-1584

    PubMed  CAS  Google Scholar 

  28. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293-299

    PubMed  CAS  Google Scholar 

  29. Carroll JL, Nielsen LL, Pruett SB, Mathis JM (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 1(1):49-60

    PubMed  CAS  Google Scholar 

  30. Molinier-Frenkel V, Le Boulaire C, Le Gal FA et al (2000) Longitudinal follow-up of cellular and humoral immunity induced by recombinant adenovirus-mediated gene therapy in cancer patients. Hum Gene Ther 11(13):1911-1920

    PubMed  CAS  Google Scholar 

  31. Yen N, Ioannides CG, Xu K et al (2000) Cellular and humoral immune responses to adenovirus and p53 protein antigens in patients following intratumoral injection of an adenovirus vector expressing wild-type. P53 (Ad-p53). Cancer Gene Ther 7(4):530-536

    PubMed  CAS  Google Scholar 

  32. Owen-Schaub LB, Zhang W, Cusack JC et al (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15(6):3032-3040

    PubMed  CAS  Google Scholar 

  33. Roth JA, Nguyen D, Lawrence DD et al (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 2(9):985-991

    PubMed  CAS  Google Scholar 

  34. Swisher SG, Roth JA, Nemunaitis J et al (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91(9):763-771

    PubMed  CAS  Google Scholar 

  35. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA (1994) Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 54(9):2287-2291

    PubMed  CAS  Google Scholar 

  36. Nguyen DM, Spitz FR, Yen N, Cristiano RJ, Roth JA (1996) Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J Thorac Cardiovasc Surg 112(5):1372-1376 discussion 6-7

    PubMed  CAS  Google Scholar 

  37. Yver A, Dreiling LK, Mohanty S et al (1999) Tolerance and safety of RPR/INGN 201, an adeno-viral vector containing a p53 gene, administered intratumorally in 309 patients with advanced cancer enrolled in phase I and II studies world-wide. Proc Am Soc Clin Oncol 19:460a

    Google Scholar 

  38. Nemunaitis J, Swisher SG, Timmons T et al (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 18(3):609-622

    PubMed  CAS  Google Scholar 

  39. Schuler M, Herrmann R, De Greve JL et al (2001) Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol 19(6):1750-1758

    PubMed  CAS  Google Scholar 

  40. Broaddus WC, Liu Y, Steele LL et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91(6):997-1004

    PubMed  CAS  Google Scholar 

  41. Feinmesser M, Halpern M, Fenig E et al (1999) Expression of the apoptosis-related oncogenes bcl-2, bax, and p53 in Merkel cell carcinoma: can they predict treatment response and clinical outcome? Hum Pathol 30(11):1367-1372

    PubMed  CAS  Google Scholar 

  42. Jasty R, Lu J, Irwin T, Suchard S, Clarke MF, Castle VP (1998) Role of p53 in the regulation of irradiation-induced apoptosis in neuroblastoma cells. Mol Genet Metab 65(2):155-164

    PubMed  CAS  Google Scholar 

  43. Sakakura C, Sweeney EA, Shirahama T et al (1996) Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int J Cancer 67(1):101-105

    PubMed  CAS  Google Scholar 

  44. Swisher S, Roth JA, Komaki R et al (2000) A phase II trial of adenoviral mediated p53 gene transfer (RPR/INGN 201) in conjunction with radiation therapy in patients with localized non-small cell lung cancer (NSCLC). Am Soc Clin Oncol 19:461a

    Google Scholar 

  45. Chada S, Mhashilkar A, Roth JA, Gabrilovich D (2003) Development of vaccines against self-antigens: the p53 paradigm. Curr Opin Drug Discov Devel 6(2):169-173

    PubMed  CAS  Google Scholar 

  46. Ishida T, Chada S, Stipanov M et al (1999) Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin Exp Immunol 117(2):244-251

    PubMed  CAS  Google Scholar 

  47. Mayordomo JI, Loftus DJ, Sakamoto H et al (1996) Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 183(4):1357-1365

    PubMed  CAS  Google Scholar 

  48. Nikitina EY, Clark JI, Van Beynen J et al (2001) Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res 7(1):127-135

    PubMed  CAS  Google Scholar 

  49. Antonia SJ, Mirza N, Fricke I et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12(3 Pt 1):878-887

    PubMed  CAS  Google Scholar 

  50. Ito I, Ji L, Tanaka F et al (2004) Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 11(11):733-739

    PubMed  CAS  Google Scholar 

  51. Uno F, Sasaki J, Nishizaki M et al (2004) Myristoylation of the fus1 protein is required for tumor suppression in human lung cancer cells. Cancer Res 64(9):2969-2976

    PubMed  CAS  Google Scholar 

  52. Clark RE (2000) Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems. Leukemia 14(3):347-355

    PubMed  CAS  Google Scholar 

  53. Baker BF, Monia BP (1999) Novel mechanisms for antisense-mediated regulation of gene expression. Biochim Biophys Acta 1489(1):3-18

    PubMed  CAS  Google Scholar 

  54. Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489(1):31-44

    PubMed  CAS  Google Scholar 

  55. Gewirtz AM (2000) Oligonucleotide therapeutics: a step forward. J Clin Oncol 18(9):1809-1811

    PubMed  CAS  Google Scholar 

  56. Koller E, Gaarde WA, Monia BP (2000) Elucidating cell signaling mechanisms using antisense technology. Trends Pharmacol Sci 21(4):142-148

    PubMed  CAS  Google Scholar 

  57. Coppelli FM, Grandis JR (2005) Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond. Curr Pharm Des 11(22):2825-2840

    PubMed  CAS  Google Scholar 

  58. Tamm I, Wagner M (2006) Antisense therapy in clinical oncology: preclinical and clinical experiences. Mol Biotechnol 33(3):221-238

    PubMed  CAS  Google Scholar 

  59. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem/FEBS 270(8):1628-1644

    CAS  Google Scholar 

  60. Brown DA, Kang SH, Gryaznov SM et al (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 269(43):26801-26805

    PubMed  CAS  Google Scholar 

  61. Levin AA (1999) A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1489(1):69-84

    PubMed  CAS  Google Scholar 

  62. Zhang R, Iyer RP, Yu D et al (1996) Pharmacokinetics and tissue disposition of a chimeric oligodeoxynucleoside phosphorothioate in rats after intravenous administration. J Pharmacol Exp Ther 278(2):971-979

    PubMed  CAS  Google Scholar 

  63. Zhang R, Lu Z, Zhang X et al (1995) In vivo stability and disposition of a self-stabilized oligodeoxynucleotide phosphorothioate in rats. Clin Chem 41(6 Pt 1):836-843

    PubMed  CAS  Google Scholar 

  64. Zhang R, Diasio RB, Lu Z et al (1995) Pharmacokinetics and tissue distribution in rats of an oligodeoxynucleotide phosphorothioate (GEM 91) developed as a therapeutic agent for human immunodeficiency virus type-1. Biochem Pharmacol 49(7):929-939

    PubMed  CAS  Google Scholar 

  65. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334(6184):661-665

    PubMed  CAS  Google Scholar 

  66. Basu A (1993) The potential of protein kinase C as a target for anticancer treatment. Pharmacol Ther 59(3):257-280

    PubMed  CAS  Google Scholar 

  67. Blobe GC, Obeid LM, Hannun YA (1994) Regulation of protein kinase C and role in cancer biology. Cancer Metastasis Rev 13(3-4):411-431

    PubMed  CAS  Google Scholar 

  68. Yuspa SH (1994) The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis - thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res 54(5):1178-1189

    PubMed  CAS  Google Scholar 

  69. Ways DK, Kukoly CA, de Vente J et al (1995) MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 95(4):1906-1915

    PubMed  CAS  Google Scholar 

  70. O’Brian C, Vogel VG, Singletary SE, Ward NE (1989) Elevated protein kinase C expression in human breast tumor biopsies relative to normal breast tissue. Cancer Res 49(12):3215-3217

    PubMed  Google Scholar 

  71. Perletti GP, Smeraldi C, Porro D, Piccinini F (1994) Involvement of the alpha isoenzyme of protein kinase C in the growth inhibition induced by phorbol esters in MH1C1 hepatoma cells. Biochem Biophys Res Commun 205(3):1589-1594

    PubMed  CAS  Google Scholar 

  72. Adesina AM, Dooley N, Yong VW, Nalbantoglu J (1998) Differential role for protein kinase C-mediated signaling in the proliferation of medulloblastoma cell lines. Int J Oncol 12(4):759-768

    PubMed  CAS  Google Scholar 

  73. Dean N, McKay R, Miraglia L et al (1996) Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res 56(15):3499-3507

    PubMed  CAS  Google Scholar 

  74. Nemunaitis J, Holmlund JT, Kraynak M et al (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 17(11):3586-3595

    PubMed  CAS  Google Scholar 

  75. Yuen AR, Halsey J, Fisher GA et al (1999) Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5(11):3357-3363

    PubMed  CAS  Google Scholar 

  76. Villalona-Calero MA, Ritch P, Figueroa JA et al (2004) A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 10(18 Pt 1):6086-6093

    PubMed  CAS  Google Scholar 

  77. Miyake H, Chi KN, Gleave ME (2000) Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res 6(5):1655-1663

    PubMed  CAS  Google Scholar 

  78. Zellweger T, Miyake H, July LV, Akbari M, Kiyama S, Gleave ME (2001) Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clusterin. Neoplasia 3(4):360-367

    PubMed  CAS  Google Scholar 

  79. Chi KN, Eisenhauer E, Fazli L et al (2005) A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97(17):1287-1296

    PubMed  CAS  Google Scholar 

  80. Chi KN, Siu LL, Hirte H et al (2008) A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res 14(3):833-839

    PubMed  CAS  Google Scholar 

  81. Gleave M, Miyake H (2005) Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. World J Urol 23(1):38-46

    PubMed  CAS  Google Scholar 

  82. Laskin J, Chi KN, Melosky B et al (2006) Phase I study of OGX-011, a second generation antisense oligonucleotide (ASO) to clusterin, combined with cisplatin and gemcitabine as first-line treatment for patients with stage IIB/IV non-small cell lung cancer (NSCLC). J Clin Oncol 24(18S):17078

    Google Scholar 

  83. Cunningham CC, Holmlund JT, Geary RS et al (2001) A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92(5):1265-1271

    PubMed  CAS  Google Scholar 

  84. Dang T, Johnson DH, Kelly K, Rizvi N, Holmlund J, Dorr A (2001) Multicenter phase II trial of an antisense inhibitor of H-ras (ISIS-2503) in advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 20:1325a

    Google Scholar 

  85. Bollag G, McCormick F (1991) Regulators and effectors of ras proteins. Annu Rev Cell Biol 7:601-632

    PubMed  CAS  Google Scholar 

  86. Bos JL (1989) ras Oncogenes in human cancer: a review. Cancer Res 49(17):4682-4689

    PubMed  CAS  Google Scholar 

  87. Eckhardt SG, Rizzo J, Sweeney KR et al (1999) Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J Clin Oncol 17(4):1095-1104

    PubMed  CAS  Google Scholar 

  88. Cunningham CC, Holmlund JT, Schiller JH et al (2000) A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 6(5):1626-1631

    PubMed  CAS  Google Scholar 

  89. Coudert B, Anthoney A, Fiedler W et al (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer 37(17):2194-2198

    PubMed  CAS  Google Scholar 

  90. Gokhale PC, Zhang C, Newsome JT et al (2002) Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res 8(11):3611-3621

    PubMed  CAS  Google Scholar 

  91. Rudin CM, Marshall JL, Huang CH et al (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 10(21):7244-7251

    PubMed  CAS  Google Scholar 

  92. Reed JC, Stein C, Subasinghe C et al (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50(20):6565-6570

    PubMed  CAS  Google Scholar 

  93. Kitada S, Miyashita T, Tanaka S, Reed JC (1993) Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev 3(2):157-169

    PubMed  CAS  Google Scholar 

  94. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC (1994) Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 4(2):71-79

    PubMed  CAS  Google Scholar 

  95. Cotter FE, Johnson P, Hall P et al (1994) Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 9(10):3049-3055

    PubMed  CAS  Google Scholar 

  96. Gleave ME, Miayake H, Goldie J, Nelson C, Tolcher A (1999) Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 54(6A Suppl):36-46

    PubMed  CAS  Google Scholar 

  97. Miyake H, Tolcher A, Gleave ME (1999) Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res 59(16):4030-4034

    PubMed  CAS  Google Scholar 

  98. Cotter FE, Corbo M, Raynaud F et al (1996) Bcl-2 antisense therapy in lymphoma: in vitro and in vivo mechanisms, efficacy, pharmacokinetics and toxicity studies. Ann Oncol 7:32

    Google Scholar 

  99. Tolcher AW, Chi K, Kuhn J et al (2005) A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 11(10):3854-3861

    PubMed  CAS  Google Scholar 

  100. Rudin CM, Otterson GA, Mauer AM et al (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 13(4):539-545

    PubMed  CAS  Google Scholar 

  101. Webb A, Cunningham D, Cotter F et al (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349(9059):1137-1141

    PubMed  CAS  Google Scholar 

  102. Waters JS, Webb A, Cunningham D et al (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 18(9):1812-1823

    PubMed  CAS  Google Scholar 

  103. Bedikian AY, Millward M, Pehamberger H et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24(29):4738-4745

    PubMed  CAS  Google Scholar 

  104. Li F, Ambrosini G, Chu EY et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711):580-584

    PubMed  CAS  Google Scholar 

  105. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917-921

    PubMed  CAS  Google Scholar 

  106. Tamm I, Wang Y, Sausville E et al (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58(23):5315-5320

    PubMed  CAS  Google Scholar 

  107. Lu CD, Altieri DC, Tanigawa N (1998) Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res 58(9):1808-1812

    PubMed  CAS  Google Scholar 

  108. Lal A, Lash AE, Altschul SF et al (1999) A public database for gene expression in human cancers. Cancer Res 59(21):5403-5407

    PubMed  CAS  Google Scholar 

  109. Li F, Ackermann EJ, Bennett CF et al (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1(8):461-466

    PubMed  CAS  Google Scholar 

  110. Chen J, Wu W, Tahir SK et al (2000) Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia 2(3):235-241

    PubMed  CAS  Google Scholar 

  111. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843-854

    PubMed  CAS  Google Scholar 

  112. Ichim TE, Li M, Qian H et al (2004) RNA interference: a potent tool for gene-specific therapeutics. Am J Transplant 4(8):1227-1236

    PubMed  CAS  Google Scholar 

  113. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494-498

    PubMed  CAS  Google Scholar 

  114. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437-1441

    PubMed  CAS  Google Scholar 

  115. Paroo Z, Corey DR (2004) Challenges for RNAi in vivo. Trends Biotechnol 22(8):390-394

    PubMed  CAS  Google Scholar 

  116. Braasch DA, Jensen S, Liu Y et al (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42(26):7967-7975

    PubMed  CAS  Google Scholar 

  117. Hough SR, Wiederholt KA, Burrier AC, Woolf TM, Taylor MF (2003) Why RNAi makes sense. Nat Biotechnol 21(7):731-732

    PubMed  CAS  Google Scholar 

  118. Hogrefe RI (1999) An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev 9(4):351-357

    PubMed  CAS  Google Scholar 

  119. Crooke ST (2000) Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic Acid Drug Dev 10(2):123-126 discussion 7

    PubMed  CAS  Google Scholar 

  120. Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol 45(5):932-943

    PubMed  CAS  Google Scholar 

  121. Geary RS, Watanabe TA, Truong L et al (2001) Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296(3):890-897

    PubMed  CAS  Google Scholar 

  122. Geary RS, Yu RZ, Levin AA (2001) Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs 2(4):562-573

    PubMed  CAS  Google Scholar 

  123. Martinez LA, Naguibneva I, Lehrmann H et al (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A 99(23):14849-14854

    PubMed  CAS  Google Scholar 

  124. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer cell 2(3):243-247

    PubMed  CAS  Google Scholar 

  125. Kawasaki H, Suyama E, Iyo M, Taira K (2003) siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 31(3):981-987

    PubMed  CAS  Google Scholar 

  126. Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31(2):700-707

    PubMed  CAS  Google Scholar 

  127. Yang G, Thompson JA, Fang B, Liu J (2003) Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer. Oncogene 22(36):5694-5701

    PubMed  CAS  Google Scholar 

  128. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y (2003) siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 3(4):194-204

    PubMed  CAS  Google Scholar 

  129. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101(4):1566-1569

    PubMed  CAS  Google Scholar 

  130. Yoshinouchi M, Yamada T, Kizaki M et al (2003) In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 8(5):762-768

    PubMed  CAS  Google Scholar 

  131. Choudhury A, Charo J, Parapuram SK et al (2004) Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 108(1):71-77

    PubMed  CAS  Google Scholar 

  132. Yang G, Cai KQ, Thompson-Lanza JA, Bast RC Jr, Liu J (2004) Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 279(6):4339-4345

    PubMed  CAS  Google Scholar 

  133. Farrow B, Rychahou P, Murillo C, O’Connor KL, Iwamura T, Evers BM (2003) Inhibition of pancreatic cancer cell growth and induction of apoptosis with novel therapies directed against protein kinase A. Surgery 134(2):197-205

    PubMed  Google Scholar 

  134. Yague E, Higgins CF, Raguz S (2004) Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 11(14):1170-1174

    PubMed  CAS  Google Scholar 

  135. Kosciolek BA, Kalantidis K, Tabler M, Rowley PT (2003) Inhibition of telomerase activity in human cancer cells by RNA interference. Mol Cancer Ther 2(3):209-216

    PubMed  CAS  Google Scholar 

  136. Cioca DP, Aoki Y, Kiyosawa K (2003) RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 10(2):125-133

    PubMed  CAS  Google Scholar 

  137. Aharinejad S, Paulus P, Sioud M et al (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64(15):5378-5384

    PubMed  CAS  Google Scholar 

  138. Li K, Lin SY, Brunicardi FC, Seu P (2003) Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 63(13):3593-3597

    PubMed  CAS  Google Scholar 

  139. Uchida H, Tanaka T, Sasaki K et al (2004) Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 10(1):162-171

    PubMed  CAS  Google Scholar 

  140. Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB (2003) Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 9(4):1291-1300

    PubMed  CAS  Google Scholar 

  141. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene 23(2):465-473

    PubMed  CAS  Google Scholar 

  142. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 23(8):1539-1548

    PubMed  CAS  Google Scholar 

  143. Salisbury AJ, Macaulay VM (2003) Development of molecular agents for IGF receptor targeting. Horm Metab Res 35(11-12):843-849

    PubMed  CAS  Google Scholar 

  144. Filleur S, Courtin A, Ait-Si-Ali S et al (2003) SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63(14):3919-3922

    PubMed  CAS  Google Scholar 

  145. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64(10):3365-3370

    PubMed  CAS  Google Scholar 

  146. Chen J, Wall NR, Kocher K et al (2004) Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 113(12):1784-1791

    PubMed  CAS  Google Scholar 

  147. Lakka SS, Gondi CS, Yanamandra N et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23(27):4681-4689

    PubMed  CAS  Google Scholar 

  148. Bass BL (2001) RNA interference. The short answer. Nature 411(6836):428-429

    PubMed  CAS  Google Scholar 

  149. Aoki Y, Cioca DP, Oidaira H, Kamiya J, Kiyosawa K (2003) RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 30(1-2):96-102

    PubMed  CAS  Google Scholar 

  150. Coma S, Noe V, Lavarino C et al (2004) Use of siRNAs and antisense oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis. Oligonucleotides 14(2):100-113

    PubMed  CAS  Google Scholar 

  151. Miyagishi M, Hayashi M, Taira K (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 13(1):1-7

    PubMed  CAS  Google Scholar 

  152. Lieberman J, Song E, Lee SK, Shankar P (2003) Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med 9(9):397-403

    PubMed  CAS  Google Scholar 

  153. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418(6893):38-39

    PubMed  CAS  Google Scholar 

  154. Sioud M, Sorensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312(4):1220-1225

    PubMed  CAS  Google Scholar 

  155. Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327(4):761-766

    PubMed  CAS  Google Scholar 

  156. Tan Y, Zhang JS, Huang L (2002) Codelivery of NF-kappaB decoy-related oligodeoxynucleotide improves LPD-mediated systemic gene transfer. Mol Ther 6(6):804-812

    PubMed  CAS  Google Scholar 

  157. Cao X, Daniel J, Ozvaran M et al (2004) Bcl-XL silencing in thoracic malignancies using short interfering RNA (siRNA) (Abstract). Cancer Gene Ther (in press)

    Google Scholar 

  158. Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20(10):1006-1010

    PubMed  CAS  Google Scholar 

  159. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10(11):3667-3677

    PubMed  CAS  Google Scholar 

  160. Barton GM, Medzhitov R (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci U S A 99(23):14943-14945

    PubMed  CAS  Google Scholar 

  161. Lee MT, Coburn GA, McClure MO, Cullen BR (2003) Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 77(22):11964-11972

    PubMed  CAS  Google Scholar 

  162. Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100(1):183-188

    PubMed  CAS  Google Scholar 

  163. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 100(4):1844-1848

    PubMed  CAS  Google Scholar 

  164. Lin J, Lin E, Nemunaitis J (2004) Bacteria in the treatment of cancer. Curr Opin Mol Ther 6(6):629-639

    PubMed  CAS  Google Scholar 

  165. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5(9):834-839

    PubMed  CAS  Google Scholar 

  166. Hill JA, Ichim TE, Kusznieruk KP et al (2003) Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA. J Immunol 171(2):691-696

    PubMed  CAS  Google Scholar 

  167. Kim DH, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22(3):321-325

    PubMed  CAS  Google Scholar 

  168. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209-216

    PubMed  CAS  Google Scholar 

  169. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635-637

    PubMed  CAS  Google Scholar 

  170. Snove O Jr, Holen T (2004) Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun 319(1):256-263

    PubMed  CAS  Google Scholar 

  171. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430(6996):161-164

    PubMed  CAS  Google Scholar 

  172. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540

    PubMed  CAS  Google Scholar 

  173. Moss EG (2003) Silencing unhealthy alleles naturally. Trends Biotechnol 21(5):185-187

    PubMed  CAS  Google Scholar 

  174. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326-330

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nemunaitis, J., Roth, J. (2010). Gene-Based Therapies for Lung Cancer. In: Stewart, D. (eds) Lung Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-524-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-524-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-523-1

  • Online ISBN: 978-1-60761-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics