Skip to main content

Adaptive Combinatorial Design of Focused Compound Libraries

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 572))

Summary

Low-throughput screening for bioactive substances often represents the only way to discover new ligands of a drug target. This limits the number of compounds that can be tested for bioactivity. In such a situation, the design of small, focused compound libraries provides an alternative to the concept of large, maximally diverse screening collections. We present the technique of “adaptive” compound library design, which implements a simulated evolutionary process. Compound assembly and determination of bioactivity can be performed using computer-based methods (virtual screening), or in the laboratory. We show that there exists an optimal combination of the size of a screening library and the number of iterative screening rounds with the aim to keep experimental efforts at a minimum.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schneider, G. and Baringhaus, K.-H. (2008) Molecular Design – Concepts and Applications. Wiley-VCH: Weinheim, New York

    Google Scholar 

  2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242

    Article  PubMed  CAS  Google Scholar 

  3. Rester, U. (2006) Dock around the clock - current status of small molecule docking and scoring. QSAR Comb. Sci. 25, 605–615

    Article  CAS  Google Scholar 

  4. Cavasotto, C. N. and Orry, A. J. (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem. 7, 1006–1014

    Article  PubMed  CAS  Google Scholar 

  5. Schneider, G. and Böhm, H.-J. (2002) Virtual screening and fast automated docking methods. Drug Discov. Today 7, 64–70

    PubMed  CAS  Google Scholar 

  6. Eckert, H. and Bajorath, J. (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today. 12, 225–233

    Article  PubMed  CAS  Google Scholar 

  7. Bleicher, H. K., Böhm, H.-J., Müller, K., and Alanine, A. I. (2003) Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2, 369–378

    Article  PubMed  CAS  Google Scholar 

  8. Schneider, G. and Fechner, U. (2005) Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663

    Article  PubMed  CAS  Google Scholar 

  9. Irwin, J. J. and Shoichet, B. K. (2005) ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182

    Article  PubMed  CAS  Google Scholar 

  10. Schuffenhauer, A., Popov, M., Schopfer, U., Acklin, P., Stanek, J., and Jacoby, E. (2004) Molecular diversity management strategies for building and enhancement of diverse and focused lead discovery compound screening collections. Comb. Chem. High Throughput Screen. 7, 771–781

    Article  PubMed  CAS  Google Scholar 

  11. Honma, T. (2003) Recent advances in de novo design strategy for practical lead identification. Med. Res. Rev. 23, 606–632

    Article  PubMed  CAS  Google Scholar 

  12. Erlanson, D. A. (2007) Fragment-based lead discovery: a chemical update. Curr. Opin. Biotechnol. 17, 643–652

    Article  Google Scholar 

  13. Mauser, H. and Stahl, M. (2007) Chemical fragment spaces for de novo design. J. Chem. Inf. Model. 47, 318–324

    Article  PubMed  CAS  Google Scholar 

  14. Drewry, D. H. and Young, S. S. (1999) Appro-aches to the design of combinatorial libraries. Chemom. Intell. Lab. Syst. 48, 1–20

    Article  CAS  Google Scholar 

  15. Valler, M. J. and Green, D. (2000) Diversity screening versus focussed screening in drug discovery. Drug. Discov. Today 5, 286–293

    Article  PubMed  Google Scholar 

  16. Schneider, G. (2002) Trends in virtual combinatorial library design. Curr. Med. Chem. 9, 2095–2101

    Article  PubMed  CAS  Google Scholar 

  17. Schneider, G. and So, S.-S. (2002) Adaptive Systems in Drug Design. Landes-Bioscience: Georgetown

    Google Scholar 

  18. Siegel, M. G. and Vieth, M. (2007) Drugs in other drugs: a new look at drugs as fragments. Drug Discov. Today. 12, 71–79

    Article  PubMed  CAS  Google Scholar 

  19. Segall, M. D., Beresford, A. P., Gola, J. M., Hawksley, D., and Tarbit, M. H. (2006) Focus on success: using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery. Expert Opin. Drug Metab. Toxicol. 2, 325–337

    Article  PubMed  CAS  Google Scholar 

  20. Carr, R.A., Congreve, M., Murray, C. W., and Rees, D. C. (2005) Fragment-based lead discovery: leads by design. Drug Discov. Today 10, 987–992

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, G., Lee, M.-L., Stahl, M., and Schneider, P. (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J. Comput. Aided Mol. Des. 14, 487–494

    Article  PubMed  CAS  Google Scholar 

  22. Schneider, G., Clement-Chomienne, O., Hil­figer, L., Schneider, P., Kirsch, S., Böhm, H.-J., and Neidhart, W. (2000) Virtual screening for bioactive molecules by evolutionary de novo design. Angew. Chem. Int. Ed. Engl. 39, 4130–4133

    Article  PubMed  CAS  Google Scholar 

  23. Fechner, U. and Schneider, G. (2007) Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. J. Chem. Inf. Model. 47, 656–667

    Article  PubMed  CAS  Google Scholar 

  24. Lewell, X. Q., Judd, D. B., Watson, S. P., and Hann, M. M. (1998) RECAP – retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci. 38, 511–522

    Article  PubMed  CAS  Google Scholar 

  25. Fechner, U. and Schneider, G. (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J. Chem. Inf. Model. 46, 699–707

    Article  PubMed  CAS  Google Scholar 

  26. Gillett, V. J., Myatt, G., Zsoldos, Z., and Johnson, A. P. (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect. Drug Discov. Des. 3, 34–50

    Article  Google Scholar 

  27. Vinkers, H. M., de Jonge, M. R., Daeyaert, F. F., Heeres, J., Koymans, L. M., van Lenthe, J. H., Lewi, P. J., Timmerman, H., van Aken, K., and Janssen, P. A. (2003) SYNOPSIS: SYNthesize and Optimize System In Silico. J. Med. Chem. 46, 2765–2773

    Article  PubMed  CAS  Google Scholar 

  28. Rechenberg, I. (1994) Evolutionnstrategie ‘94. Fommann-Holzboog: Stuttgart

    Google Scholar 

  29. Schneider, G., Schrödl, W., Wallukat, G., Nissen, E., Rönspeck, G., Müller, J., Wrede, P., and Kunze, R. (1998) Peptide design by artificial neural networks and computer-based evolutionary search. Proc. Natl. Acad. Sci. U.S.A. 95, 12179–12184

    Article  PubMed  CAS  Google Scholar 

  30. Arnold, D. V. and Beyer, H. G. (2003) On the benefits of populations for noisy optimization. Evol. Comput. 11, 111–127

    Article  PubMed  Google Scholar 

  31. Schneider, G., Schuchhardt, J., and Wrede, P. (1996) Evolutionary optimization in mul-timodal search space. Biol. Cybern. 74, 203–207

    Article  Google Scholar 

  32. Hansen, N., Ostermeier, A. (2001) Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195

    Article  PubMed  CAS  Google Scholar 

  33. Arnold, D. V. and Beyer, H. G. (2006) Optimum tracking with evolution strategies. Evol. Comput. 14, 291–308

    Article  PubMed  Google Scholar 

  34. Illgen, K., Enderle, T., Broger, C., Weber, L. (2000) Simulated molecular evolution in a full combinatorial library. Chem. Biol. 7, 433–441

    Article  PubMed  CAS  Google Scholar 

  35. Schüller, A., Fechner, U., Renner, S., Franke, L., Weber, L., and Schneider, G. (2006) A pseudo-ligand approach to virtual screening. Comb. Chem. High Throughput Screen. 9, 359–364

    Article  PubMed  Google Scholar 

  36. Schüller, A., and Schneider, G. (2008) Identification of hits and lead structure candidates with limited resources by adaptive optimization. J. Chem. Inf. Model. 48, 1473–1491

    Article  PubMed  Google Scholar 

  37. Weininger, D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36

    Article  CAS  Google Scholar 

  38. Schüller, A., Hähnke, V., and Schneider, G. (2007) SmiLib v2.0: a Java-based tool for rapid combinatorial library enumeration. QSAR Comb. Sci. 26, 407–410

    Article  Google Scholar 

  39. Güner, O. (Ed.) (2000) Pharmacophore Perception, Development, and Use for Drug Design. International University Line: La Jolla

    Google Scholar 

  40. Schneider, G., Schneider, P., and Renner, S. (2006) Scaffold-hopping: how far can you jump? QSAR Comb. Sci. 25, 1162–1171

    Article  CAS  Google Scholar 

  41. Johnson, M. A. and Maggiora, G. M. (Eds.) (1990) Concepts and Applications of Molecular Similarity. Wiley: New York, p. 393

    Google Scholar 

  42. Peltason, L. and Bajorath, J. (2007) SAR Index: quantifying the nature of structure-activity relationships. J. Med. Chem. 50, 5571–5578

    Article  PubMed  CAS  Google Scholar 

  43. Bull, J. J., Meyers, L. A., and Lachmann, M. (2005) Quasispecies made simple. PLoS Comput. Biol. 1, e61

    Article  PubMed  CAS  Google Scholar 

  44. Fechner, U. and Schneider, G. (2004) Evaluation of distance metrics for ligand-based similarity searching. Chembiochem 5, 538–540

    Article  PubMed  CAS  Google Scholar 

  45. Renner, S., Fechner, U., and Schneider, G. (2005) Alignment-free pharmacophore patterns – a correlation-vector approach. In: Langer, T. and Hoffmann, E. (Eds.) Pharmacophores and Pharmacophore Searches. Wiley-VCH: Weinheim, New York, pp. 49–79

    Google Scholar 

  46. Weber, L., Wallbaum, S., Broger, C., and Gubernator, K. (1995) Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. Int. Ed. Engl. 34, 2280–2282

    Article  CAS  Google Scholar 

  47. Weber, L. (2005) Current status of virtual combinatorial library design. QSAR Comb. Sci. 24, 809–823

    Article  CAS  Google Scholar 

  48. Rogers-Evans, M., Alanine, A. I., Bleicher, K. H., Kube, D., and Schneider, G. (2004) Identification of novel cannabinoid receptor ligands via evolutionary de novo design and rapid parallel synthesis. QSAR Comb. Sci. 23, 426–430

    Article  CAS  Google Scholar 

  49. Alok, A., Sinha, M., Singh, N., Sharma, S., Kaur, P., and Singh, T. P. (2007) Crystal structure of the trypsin complex with benzamidine at high temperature (35 C). PDB entry 2oxs, unpublished

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. L. Weber for providing the Ugi-type compound database. This work was supported by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften, the DFG Sonderforschungsbereich 579 (project A11.2), and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Schneider, G., Schüller, A. (2010). Adaptive Combinatorial Design of Focused Compound Libraries. In: Roque, A. (eds) Ligand-Macromolecular Interactions in Drug Discovery. Methods in Molecular Biology, vol 572. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-244-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-244-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-243-8

  • Online ISBN: 978-1-60761-244-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics