Skip to main content

DNA Damage Response and the Balance Between Cell Survival and Cell Death

  • Chapter
  • First Online:
  • 872 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

DNA damage induces the activation of a cascade of kinases that trigger the DNA damage response (DDR). Downstream are targets that either help cells to survive or undergo cell death. DNA damage-induced cell death is executed by apoptosis, necrosis, mitotic catastrophe, and autophagy. Of these different forms of cell inactivation, apoptosis is often the main route of cell death following DNA damage. Cells undergo apoptosis upon genotoxic stress via the death receptor and/or the intrinsic mitochondrial damage pathway, with p53 and AP-1 involved decisively. Not every type of DNA damage induces apoptosis. Many DNA lesions are tolerated by the cell, some are mutagenic without being toxic and some are more toxic than mutagenic. Severe DNA damages are O6-alkylguanines, bulky lesions, and DNA double-strand breaks, that activate DDR and downstream survival and death signals. The survival and death pathways triggered by upstream DDR functions will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15(19):5314–5325

    PubMed  CAS  Google Scholar 

  2. Gross S, Knebel A, Tenev T et al (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274(37):26378–26386

    Article  PubMed  CAS  Google Scholar 

  3. Aragane Y, Kulms D, Metze D et al (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140(1):171–182

    Article  PubMed  CAS  Google Scholar 

  4. Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A 96(14):7974–7979

    Article  PubMed  CAS  Google Scholar 

  5. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274(12):7987–7992

    Article  PubMed  CAS  Google Scholar 

  6. Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22(4):579–585

    Article  PubMed  CAS  Google Scholar 

  7. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099

    Article  CAS  Google Scholar 

  8. Batista LF, Kaina B, Meneghini R, Menck CF. How DNA lesions are turned into powerful killing structures: Insights from UV-induced apoptosis. Mutat Res 2008.

    Google Scholar 

  9. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450

    Article  PubMed  CAS  Google Scholar 

  10. Christmann M, Tomicic MT, Aasland D, Kaina B (2007) A role for UV-light-induced c-Fos: Stimulation of nucleotide excision repair and protection against sustained JNK activation and apoptosis. Carcinogenesis 28(1):183–190

    Article  PubMed  CAS  Google Scholar 

  11. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  PubMed  CAS  Google Scholar 

  12. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25(15):3504–3514

    Article  PubMed  CAS  Google Scholar 

  13. Pellegrini M, Celeste A, Difilippantonio S et al (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443(7108):222–225

    Article  PubMed  CAS  Google Scholar 

  14. Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2(4):203–214

    PubMed  CAS  Google Scholar 

  15. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554

    Article  PubMed  CAS  Google Scholar 

  16. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21(1):281–288

    Article  PubMed  CAS  Google Scholar 

  17. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621

    Article  PubMed  CAS  Google Scholar 

  18. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304(5667):93–96

    Article  PubMed  CAS  Google Scholar 

  19. Carney JP, Maser RS, Olivares H et al (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93(3):477–486

    Article  PubMed  CAS  Google Scholar 

  20. Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9(6):683–690

    Article  PubMed  CAS  Google Scholar 

  21. Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26(5):1691–1699

    Article  PubMed  CAS  Google Scholar 

  22. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18(12):1423–1438

    Article  PubMed  CAS  Google Scholar 

  23. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762

    PubMed  CAS  Google Scholar 

  24. Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298(5597):1435–1438

    Article  PubMed  CAS  Google Scholar 

  25. Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19(9):1040–1052

    Article  PubMed  CAS  Google Scholar 

  26. Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9–1-1 for DNA damage: the Rad9-Hus1-Rad1 (9–1-1) clamp complex. DNA Repair (Amst) 3(8–9):1009–1014

    Article  CAS  Google Scholar 

  27. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548

    Article  PubMed  CAS  Google Scholar 

  28. Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24): 13827–13832

    Article  PubMed  CAS  Google Scholar 

  29. Ball HL, Myers JS, Cortez D (2005) ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 16(5): 2372–2381

    Article  PubMed  CAS  Google Scholar 

  30. Kim SM, Kumagai A, Lee J, Dunphy WG (2005) Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 280(46):38355–38364

    Article  PubMed  CAS  Google Scholar 

  31. Ball HL, Cortez D (2005) ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J Biol Chem 280(36):31390–31396

    Article  PubMed  CAS  Google Scholar 

  32. Makiniemi M, Hillukkala T, Tuusa J et al (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276(32):30399–30406

    Article  PubMed  CAS  Google Scholar 

  33. Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21(12):1472–1477

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282(38):28036–28044

    Article  PubMed  CAS  Google Scholar 

  35. Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5):943–955

    Article  PubMed  CAS  Google Scholar 

  36. Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203(2):297–303

    Article  PubMed  CAS  Google Scholar 

  37. Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2007) Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J Biol Chem 282(24):17501–17506

    Article  PubMed  CAS  Google Scholar 

  38. Stiff T, Walker SA, Cerosaletti K et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25(24):5775–5782

    Article  PubMed  CAS  Google Scholar 

  39. Zhou BB, Chaturvedi P, Spring K et al (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275(14):10342–10348

    Article  PubMed  CAS  Google Scholar 

  40. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97(19):10389–10394

    Article  PubMed  CAS  Google Scholar 

  41. Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    PubMed  CAS  Google Scholar 

  42. Guo Z, Kumagai A, Wang SX, Dunphy WG (2000) Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14(21):2745–2756

    Article  PubMed  CAS  Google Scholar 

  43. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300

    PubMed  CAS  Google Scholar 

  44. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782

    Article  PubMed  CAS  Google Scholar 

  45. Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14(3):278–288

    PubMed  CAS  Google Scholar 

  46. Hirao A, Kong YY, Matsuoka S et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827

    Article  PubMed  CAS  Google Scholar 

  47. Unger T, Juven-Gershon T, Moallem E et al (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18(7):1805–1814

    Article  PubMed  CAS  Google Scholar 

  48. Banin S, Moyal L, Shieh S et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677

    Article  PubMed  CAS  Google Scholar 

  49. Canman CE, Lim DS, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679

    Article  PubMed  CAS  Google Scholar 

  50. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96(26):14973–14977

    Article  PubMed  CAS  Google Scholar 

  51. Mailand N, Falck J, Lukas C et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429

    Article  Google Scholar 

  52. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331):1501–1505

    Article  PubMed  CAS  Google Scholar 

  53. Sanchez Y, Wong C, Thoma RS et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501

    Article  PubMed  CAS  Google Scholar 

  54. Dalal SN, Schweitzer CM, Gan J, DeCaprio JA (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 19(6):4465–4479

    PubMed  CAS  Google Scholar 

  55. Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312(14):2654–2659

    Article  PubMed  CAS  Google Scholar 

  56. Alcasabas AA, Osborn AJ, Bachant J et al (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958–965

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3(11):966–972

    Article  PubMed  CAS  Google Scholar 

  58. Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6(4):839–849

    Article  PubMed  CAS  Google Scholar 

  59. Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17(14):1755–1767

    Article  PubMed  CAS  Google Scholar 

  60. Lou H, Komata M, Katou Y et al (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106–117

    Article  PubMed  CAS  Google Scholar 

  61. Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19(5):691–697

    Article  PubMed  CAS  Google Scholar 

  62. Kamer I, Sarig R, Zaltsman Y et al (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122(4):593–603

    Article  PubMed  CAS  Google Scholar 

  63. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ (2005) A role for proapoptotic BID in the DNA-damage response. Cell 122(4):579–591

    Article  PubMed  CAS  Google Scholar 

  64. Roos WP, Batista LF, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O(6)-methylguanine. Oncogene 26(2):186–197

    Article  PubMed  CAS  Google Scholar 

  65. Christmann M, Fritz G, Kaina B (2007) Induction of DNA repair genes in mammalian cells in response to genotoxic stress. In: Lankenau D (ed) Genome Dynamics and Stability, vol 1. Springe, Berlin, pp 383-–398

    Google Scholar 

  66. Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67(24):11886–11895

    Article  PubMed  CAS  Google Scholar 

  67. Hamdi M, Kool J, Cornelissen-Steijger P et al (2005) DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24(48):7135–7144

    Article  PubMed  CAS  Google Scholar 

  68. Franklin CC, Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem 272(27):16917–16923

    Article  PubMed  CAS  Google Scholar 

  69. Hirsch DD, Stork PJ (1997) Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J Biol Chem 272(7):4568–4575

    Article  PubMed  CAS  Google Scholar 

  70. Mancini M, Machamer CE, Roy S et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612

    Article  PubMed  CAS  Google Scholar 

  71. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6(7):644–651

    Article  PubMed  CAS  Google Scholar 

  72. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354

    Article  PubMed  CAS  Google Scholar 

  73. Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314

    Article  PubMed  CAS  Google Scholar 

  74. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277(16):13430–13437

    Article  PubMed  CAS  Google Scholar 

  75. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277(33):29803–29809

    Article  PubMed  CAS  Google Scholar 

  76. Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S (2004) Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5(6):643–648

    Article  PubMed  CAS  Google Scholar 

  77. Enoksson M, Robertson JD, Gogvadze V et al (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279(48):49575–49578

    Article  PubMed  CAS  Google Scholar 

  78. Nabel GJ, Verma IM (1993) Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev 7(11): 2063

    Article  PubMed  CAS  Google Scholar 

  79. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  PubMed  CAS  Google Scholar 

  80. Molitor JA, Walker WH, Doerre S, Ballard DW, Green WC (1990) a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proc Natl Acad Sci U S A 87(24):10028–10032

    Article  PubMed  CAS  Google Scholar 

  81. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273(32)):20551–20555

    Article  PubMed  CAS  Google Scholar 

  82. Schutze S, Machleidt T, Kronke M (1994) The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol 56(5):533–541

    PubMed  CAS  Google Scholar 

  83. Zhang G, Ghosh S (2000) Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6(6):453–457

    Article  PubMed  CAS  Google Scholar 

  84. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  85. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G (1999) NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci U S A 96(16):9136–9141

    Article  PubMed  CAS  Google Scholar 

  86. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 94(19):10057–10062

    Article  PubMed  CAS  Google Scholar 

  87. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683

    Article  PubMed  CAS  Google Scholar 

  88. Zhang H, Cowan-Jacob SW, Simonen M, Greenhalf W, Heim J, Meyhack B (2000) Structural basis of BFL-1 for its interaction with BAX and its anti-apoptotic action in mammalian and yeast cells. J Biol Chem 275(15):11092–11099

    Article  PubMed  CAS  Google Scholar 

  89. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem 277(25):22781–22788

    Article  PubMed  CAS  Google Scholar 

  90. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80(2):285–291

    Article  PubMed  CAS  Google Scholar 

  91. Zhou A, Scoggin S, Gaynor RB, Williams NS (2003) Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 22(13):2054–2064

    Article  PubMed  CAS  Google Scholar 

  92. Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003–2006

    Article  PubMed  CAS  Google Scholar 

  93. Wendel HG, De Stanchina E, Fridman JS et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980): 332–337

    Article  PubMed  CAS  Google Scholar 

  94. Bao S, Ouyang G, Bai X et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5(4):329–339

    Article  PubMed  CAS  Google Scholar 

  95. Shi Q, Bao S, Maxwell JA et al (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279(50):52200–52209

    Article  PubMed  CAS  Google Scholar 

  96. Gupta D, Syed NA, Roesler WJ, Khandelwal RL (2004) Effect of overexpression and nuclear translocation of constitutively active PKB-alpha on cellular survival and proliferation in HepG2 cells. J Cell Biochem 93(3):513–525

    Article  PubMed  CAS  Google Scholar 

  97. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278(5338):687–689

    Article  PubMed  Google Scholar 

  98. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  PubMed  CAS  Google Scholar 

  99. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-X(L). Cell 87(4):619–628

    Article  PubMed  CAS  Google Scholar 

  100. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  101. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321

    Article  PubMed  CAS  Google Scholar 

  102. Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2): 550–555

    Article  PubMed  CAS  Google Scholar 

  103. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901

    Article  PubMed  CAS  Google Scholar 

  104. Sumbayev VV, Yasinska IM (2005) Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436(2):406–412

    Article  PubMed  CAS  Google Scholar 

  105. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    Article  PubMed  CAS  Google Scholar 

  106. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604

    Article  PubMed  CAS  Google Scholar 

  107. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303

    Article  PubMed  CAS  Google Scholar 

  108. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20): 11598–11603

    Article  PubMed  CAS  Google Scholar 

  109. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998

    Article  PubMed  CAS  Google Scholar 

  110. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34

    Article  PubMed  CAS  Google Scholar 

  111. Shi et al. (2009) DNA-PKCS-PIDDosome: A nuclear caspase-2-activating complex with role in G2/m check point maintenance, Cell 136(2):508–502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements:

This work of the authors is supported by Deutsche Forschungsgemeinschaft, Mildred-Scheel Stiftung für Krebsforschung und Stiftung Rheinland-Pfalz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Kaina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaina, B., Roos, W.P., Christmann, M. (2010). DNA Damage Response and the Balance Between Cell Survival and Cell Death. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics