Skip to main content

Calcium Signaling: Receptors, Effectors, and Other Signaling Pathways

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1500 Accesses

Abstract

HF could be described, among many definitions, as a disorder of cell signaling, with determination of the way in which signals are coupled to their effectors/receptors – at the center of the most innovative work on HF pathophysiology and pathogenesis.

Previously in Chap. 8, the role of cyclic nucleotides, second messengers signaling in the control of myocardial function and their effects on HF has been discussed. In this chapter, we continue the discussion on other second messengers such as calcium-mediated signaling, followed by an appraisal of some receptor/effector factors and other relevant signaling cascades as they relate to the pathogenesis and pathophysiology of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicol RL, Frey N, Olson EN (2000) From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu Rev Genomics Hum Genet 1:179–223

    PubMed  CAS  Google Scholar 

  2. Studer R, Reinecke H, Bilger J (1994) Gene expression of the cardiac Na+-Ca++ exchanger in end stage human heart failure. Circ Res 75:443–453

    PubMed  CAS  Google Scholar 

  3. Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S (1992) Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 90:927–935

    PubMed  CAS  Google Scholar 

  4. Takahashi T, Allen P, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca2+-ATPase gene. Circ Res 71:9–17

    PubMed  CAS  Google Scholar 

  5. Linck B, Boknik P, Eschenhagen T, Muller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H (1996) Messenger RNA expression and immunological quantification of phospholamban and SR-Ca ATPase in failing and nonfailing human heart. Cardiovasc Res 31:625–632

    PubMed  CAS  Google Scholar 

  6. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    PubMed  CAS  Google Scholar 

  7. Tada M, Toyofuku T (1998) Molecular regulation of phospholamban function and expression. Trends Cardiovasc Med 8:330–340

    PubMed  CAS  Google Scholar 

  8. Berridge MJ (2006) Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem Soc Trans 34:228–231

    PubMed  CAS  Google Scholar 

  9. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    PubMed  CAS  Google Scholar 

  10. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    PubMed  CAS  Google Scholar 

  11. Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J Jr, Brown JH (2002) The cardiac-specific nuclear delta(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277:1261–1267

    PubMed  CAS  Google Scholar 

  12. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I (2000) Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 275:15239–15245

    PubMed  CAS  Google Scholar 

  13. Liang F, Wu J, Garami M, Gardner DG (1997) Mechanical strain increases expression of brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272:28050–28056

    PubMed  CAS  Google Scholar 

  14. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    PubMed  CAS  Google Scholar 

  15. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    PubMed  CAS  Google Scholar 

  16. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475

    PubMed  CAS  Google Scholar 

  17. Olson EN, Molkentin JD (1999) Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ Res 84:623–632

    PubMed  CAS  Google Scholar 

  18. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    PubMed  CAS  Google Scholar 

  19. McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546

    PubMed  CAS  Google Scholar 

  20. Chen M, Li X, Dong Q, Li Y, Liang W (2005) Neuropeptide Y induces cardiomyocyte hypertrophy via calcineurin signaling in rats. Regul Pept 125:9–15

    PubMed  CAS  Google Scholar 

  21. Ruehr ML, Russell MA, Bond M (2004) A-kinase anchoring protein targeting of protein kinase A in the heart. J Mol Cell Cardiol 37:653–656

    PubMed  CAS  Google Scholar 

  22. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    PubMed  CAS  Google Scholar 

  23. Hulme JT, Scheuer T, Catterall WA (2004) Regulation of cardiac ion channels by signaling complexes: role of modified leucine zipper motifs. J Mol Cell Cardiol 37:625–631

    PubMed  CAS  Google Scholar 

  24. Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101

    PubMed  CAS  Google Scholar 

  25. Mochly-Rosen D, Wu G, Hahn H, Osinska H, Liron T, Lorenz JN, Yatani A, Robbins J, Dorn GW 2nd (2000) Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ Res 86:1173–1179

    PubMed  CAS  Google Scholar 

  26. Zhuang D, Ceacareanu AC, Ceacareanu B, Hassid A (2005) Essential role of protein kinase G and decreased cytoplasmic Ca2+ levels in NO-induced inhibition of rat aortic smooth muscle cell motility. Am J Physiol Heart Circ Physiol 288:H1859–H1866

    PubMed  CAS  Google Scholar 

  27. Airhart N, Yang YF, Roberts CT Jr, Silberbach M (2003) Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 278:38693–38698

    PubMed  CAS  Google Scholar 

  28. Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schroder F, Molkentin JD, Drexler H, Wollert KC (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA 99:11363–11368

    PubMed  CAS  Google Scholar 

  29. Begum N, Sandu OA, Duddy N (2002) Negative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways. Diabetes 51:2256–2263

    PubMed  CAS  Google Scholar 

  30. Suzuki YJ, Nagase H, Day RM, Das DK (2004) GATA-4 regulation of myocardial survival in the preconditioned heart. J Mol Cell Cardiol 37:1195–1203

    PubMed  CAS  Google Scholar 

  31. Gudi T, Chen JC, Casteel DE, Seasholtz TM, Boss GR, Pilz RB (2002) cGMP-dependent protein kinase inhibits serum-response element-dependent transcription by inhibiting rho activation and functions. J Biol Chem 277:37382–37393

    PubMed  CAS  Google Scholar 

  32. Gudi T, Huvar I, Meinecke M, Lohmann SM, Boss GR, Pilz RB (1996) Regulation of gene expression by cGMP-dependent protein kinase. Transactivation of the c-fos promoter. J Biol Chem 271:4597–4600

    PubMed  CAS  Google Scholar 

  33. Immenschuh S, Hinke V, Ohlmann A, Gifhorn-Katz S, Katz N, Jungermann K, Kietzmann T (1998) Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem J 334:141–146

    PubMed  CAS  Google Scholar 

  34. Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88:1197–1201

    PubMed  CAS  Google Scholar 

  35. Kaye DM, Wiviott SD, Kelly RA (1999) Activation of nitric oxide synthase (NOS3) by mechanical activity alters contractile activity in a Ca2+-independent manner in cardiac myocytes: role of troponin I phosphorylation. Biochem Biophys Res Commun 256:398–403

    PubMed  CAS  Google Scholar 

  36. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540:457–467

    PubMed  CAS  Google Scholar 

  37. Becker EM, Schmidt P, Schramm M, Schroder H, Walter U, Hoenicka M, Gerzer R, Stasch JP (2000) The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J Cardiovasc Pharmacol 35:390–397

    PubMed  CAS  Google Scholar 

  38. Sporbert A, Mertsch K, Smolenski A, Haseloff RF, Schonfelder G, Paul M, Ruth P, Walter U, Blasig IE (1999) Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Brain Res Mol Brain Res 67:258–266

    PubMed  CAS  Google Scholar 

  39. Pi M, Oakley RH, Gesty-Palmer D, Cruickshank RD, Spurney RF, Luttrell LM, Quarles LD (2005) Beta-arrestin- and G protein receptor kinase-mediated calcium-sensing receptor desensitization. Mol Endocrinol 19:1078–1087

    PubMed  CAS  Google Scholar 

  40. Hata JA, Williams ML, Koch WJ (2004) Genetic manipulation of myocardial beta-adrenergic receptor activation and desensitization. J Mol Cell Cardiol 37:11–21

    PubMed  CAS  Google Scholar 

  41. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268:1350–1353

    PubMed  CAS  Google Scholar 

  42. Metaye T, Gibelin H, Perdrisot R, Kraimps JL (2005) Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 17:917–928

    PubMed  CAS  Google Scholar 

  43. Vinge LE, Oie E, Andersson Y, Grogaard HK, Andersen G, Attramadal H (2001) Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats. Am J Physiol Heart Circ Physiol 281:H2490–H2499

    PubMed  CAS  Google Scholar 

  44. Penela P, Murga C, Ribas C, Tutor AS, Peregrín S, Mayor F Jr (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69: 46–56

    PubMed  CAS  Google Scholar 

  45. Hata JA, Koch WJ (2003) Phosphorylation of G protein-coupled receptors: GPCR kinases in heart disease.Mol Interv 3:264–272; Molkentin JD (2006) Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. J Clin Invest 116:623–626

    PubMed  CAS  Google Scholar 

  46. O’Rourke MF, Iversen LJ, Lomasney JW, Bylund DB (1994) Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther 27:735–740

    Google Scholar 

  47. Flordellis C, Manolis A, Scheinin M, Paris H (2004) Clinical and pharmacological significance of alpha2-adrenoceptor polymorphisms in cardiovascular diseases. Int J Cardiol 97:367–372

    PubMed  Google Scholar 

  48. Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    PubMed  CAS  Google Scholar 

  49. Giessler C, Dhein S, Pönicke K, Brodde OE (1999) Muscarinic receptors in the failing human heart. Eur J Pharmacol 375:197–202

    PubMed  CAS  Google Scholar 

  50. Ness J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    Google Scholar 

  51. Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    PubMed  CAS  Google Scholar 

  52. Shi H, Wang H, Yang B, Xu D, Wang Z (2004) The M3 receptor-mediated K(+) current (IKM3), a G(q) protein-coupled K(+) channel. J Biol Chem 279:21774–21778

    PubMed  CAS  Google Scholar 

  53. Shi H, Wang H, Li D, Nattel S, Wang Z (2004) Differential alterations of receptor densities of three muscarinic acetylcholine receptor subtypes and current densities of the corresponding K+ channels in canine atria with atrial fibrillation induced by experimental congestive heart failure. Cell Physiol Biochem 14:31–40

    PubMed  CAS  Google Scholar 

  54. Dorn GW 2nd, Brown JH (1999) Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med 9:26–34

    PubMed  CAS  Google Scholar 

  55. van Heugten HA, Eskildsen-Helmond YE, de Jonge HW, Bezstarosti K, Lamers JM (1996) Phosphoinositide-generated messengers in cardiac signal transduction. Mol Cell Biochem 157:5–14

    PubMed  Google Scholar 

  56. Bogoyevitch MA, Glennon PE, Andersson M, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH (1994) Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 269:1110–1119

    PubMed  CAS  Google Scholar 

  57. Giannessi D, Del Ry S, Vitale RL (2001) The role of endothelins and their receptors in heart failure. Pharmacol Res 43:111–126

    PubMed  CAS  Google Scholar 

  58. Sugden PH (2003) An overview of endothelin signaling in the cardiac myocyte. J Mol Cell Cardiol 35:871–886

    PubMed  CAS  Google Scholar 

  59. Drímal J, Knezl V, Drímal J Jr, Drímal D, Bauerová K, Kettmann V, Doherty AM, Stefek M (2003) Cardiac effects of endothelin-1 (ET-1) and related C terminal peptide fragment: increased inotropy or contribution to heart failure? Physiol Res 52:701–708

    PubMed  Google Scholar 

  60. Leite-Moreira AF (2008) Myocardial effects of endothelin-1. Rev Port Cardiol 27:925–951

    PubMed  Google Scholar 

  61. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    PubMed  CAS  Google Scholar 

  62. Adams JW, Brown JH (2001) G-proteins in growth and apoptosis: lessons from the heart. Oncogene 20:1626–1634

    PubMed  CAS  Google Scholar 

  63. Mulder P, Richard V, Bouchart F, Derumeaux G, Munter K, Thuillez C (1998) Selective ETA receptor blockade prevents left ventricular remodeling and deterioration of cardiac function in experimental heart failure. Cardiovasc Res 39:600–608

    PubMed  CAS  Google Scholar 

  64. Moe GW, Albernaz A, Naik GO, Kirchengast M, Stewart DJ (1998) Beneficial effects of long-term selective endothelin type A receptor blockade in canine experimental heart failure. Cardiovasc Res 39:571–579

    PubMed  CAS  Google Scholar 

  65. Marín-García J, Goldenthal MJ, Moe GW (2002) Selective endothelin receptor blockade reverses mitochondrial dysfunction in canine heart failure. J Card Fail 8:326–332

    PubMed  Google Scholar 

  66. Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond) 100:481–492

    CAS  Google Scholar 

  67. Li Y, Takemura G, Okada H, Miyata S, Maruyama R, Esaki M, Kanamori H, Li L, Ogino A, Ohno T (2007) Molecular signaling mediated by angiotensin II type 1A receptor blockade leading to attenuation of renal dysfunction-associated heart failure. J Card Fail 13:155–162

    PubMed  CAS  Google Scholar 

  68. Saito Y, Berk BC (2002) Angiotensin II-mediated signal transduction pathways. Curr Hypertens Rep 4:167–171

    PubMed  Google Scholar 

  69. Brasier AR, Jamaluddin M, Han Y, Patterson C, Runge MS (2000) Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 212:155–169

    PubMed  CAS  Google Scholar 

  70. Chen Y, Arrigo AP, Currie RW (2004) Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock? Am J Physiol Heart Circ Physiol 287:H1104–H1114

    PubMed  CAS  Google Scholar 

  71. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2009) Acute neurohumoral modulation of diastolic function. Peptides 30: 419–425

    PubMed  CAS  Google Scholar 

  72. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ (1995) The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663–10667

    PubMed  CAS  Google Scholar 

  73. Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M et al (2008) Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation 118:2523–2532

    PubMed  CAS  Google Scholar 

  74. Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    PubMed  Google Scholar 

  75. Mohanty P, Aljada A, Ghanim H, Hofmeyer D, Tripathy D, Syed T, Al-Haddad W, Dhindsa S, Dandona P (2004) Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 89:2728–2735

    PubMed  CAS  Google Scholar 

  76. Molavi B, Chen J, Mehta JL (2006) Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am J Physiol Heart Circ Physiol 291:H687–H693

    PubMed  CAS  Google Scholar 

  77. Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci USA 104: 14074–14079

    PubMed  CAS  Google Scholar 

  78. Clerk A, Aggeli IK, Stathopoulou K, Sugden PH (2006) Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinases in neonatal cardiomyocytes. Cell Signal 18:225–235

    PubMed  CAS  Google Scholar 

  79. Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101:10042–10047

    PubMed  CAS  Google Scholar 

  80. Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, Cheng J, Lu G, Morris DJ, Castrillon DH, Gerard RD, Rothermel BA, Hill JA (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168

    PubMed  CAS  Google Scholar 

  81. Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102:686–694

    PubMed  CAS  Google Scholar 

  82. Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4:444–454

    PubMed  CAS  Google Scholar 

  83. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280

    PubMed  CAS  Google Scholar 

  84. Birks EJ, Felkin LE, Banner NR, Khaghani A, Barton PJ, Yacoub MH (2004) Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices. J Heart Lung Transplant 23:228–235

    PubMed  Google Scholar 

  85. Satoh M, Nakamura M, Akatsu T, Shimoda Y, Segawa I, Hiramori K (2004) Toll-like receptor 4 is expressed with enteroviral replication in myocardium from patients with dilated cardiomyopathy. Lab Invest 84:173–181

    PubMed  CAS  Google Scholar 

  86. Frantz S, Hu K, Bayer B, Gerondakis S, Strotmann J, Adamek A, Ertl G, Bauersachs J (2006) Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J 20:1918–1920

    PubMed  CAS  Google Scholar 

  87. Tillmanns J, Carlsen H, Blomhoff R, Valen G, Calvillo L, Ertl G, Bauersachs J, Frantz S (2006) Caught in the act: in vivo molecular imaging of the transcription factor NF-kappaB after myocardial infarction. Biochem Biophys Res Commun 342:773–774

    PubMed  CAS  Google Scholar 

  88. Oyama J, Blais C Jr, Liu X, Pu M, Kobzik L, Kelly RA, Bourcier T (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109:784–789

    PubMed  CAS  Google Scholar 

  89. Wang YP, Sato C, Mizoguchi K, Yamashita Y, Oe M, Maeta H (2002) Lipopoly-saccharide triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovasc Res 56:33–42

    PubMed  CAS  Google Scholar 

  90. Tavener SA, Long EM, Robbins SM, McRae KM, Van Remmen H, Kubes P (2004) Immune cell Toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res 95:700–707

    PubMed  CAS  Google Scholar 

  91. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 276:5197–5203

    PubMed  CAS  Google Scholar 

  92. Ha T, Li Y, Gao X, McMullen JR, Shioi T, Izumo S, Kelley JL, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C (2005) Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo. Free Radic Biol Med 39:1570–1580

    PubMed  CAS  Google Scholar 

  93. Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234

    PubMed  CAS  Google Scholar 

  94. Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW (2005) Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation 111:2319–2325

    PubMed  CAS  Google Scholar 

  95. Coughlin SR, Camerer E (2003) PARticipation in inflammation. J Clin Invest 111:25–27

    PubMed  CAS  Google Scholar 

  96. Sabri A, Short J, Guo J, Steinberg SF (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91:532–539

    PubMed  CAS  Google Scholar 

  97. Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, Steinberg SF (2000) Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 86:1054–1061

    PubMed  CAS  Google Scholar 

  98. Obreztchikova M, Elouardighi H, Ho M, Wilson BA, Gertsberg Z, Steinberg SF (2006) Distinct signaling functions for Shc isoforms in the heart. J Biol Chem 281:20197–20204

    PubMed  CAS  Google Scholar 

  99. Moshal KS, Tyagi N, Henderson B, Ovechkin AV, Tyagi SC (2005) Protease-activated receptor and endothelial-myocyte uncoupling in chronic heart failure. Am J Physiol Heart Circ Physiol 288:H2770–H2777

    PubMed  Google Scholar 

  100. Darrow AL, Fung-Leung W-P, Ye RD, Santulli RJ, Cheung W-M, Derian CK, Burns CL, Damiano BP, Zhou L, Keenan CM, Peterson PA, Andrade-Gordon P (1996) Biological consequences of thrombin receptor deficiency in mice. Thromb Haemost 76:860–866

    PubMed  CAS  Google Scholar 

  101. Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, Andrade-Gordon P, Kotzsch M, Spring D, Luther T, Abe J, Pohlman TH, Verrier ED, Blaxall BC, Mackman N (2007) Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 116:2298–2306

    PubMed  CAS  Google Scholar 

  102. Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE (2007) SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol 102: 350–358

    PubMed  CAS  Google Scholar 

  103. Strande JL (2008) Letter regarding article “Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy”. Circulation 117:e495, author reply e496

    PubMed  CAS  Google Scholar 

  104. Grassot J, Mouchiroud G, Perriere G (2003) RTKdb: database of receptor tyrosine kinase. Nucleic Acids Res 31:353–358

    PubMed  CAS  Google Scholar 

  105. Kontaridis MI, Yang W, Bence KK, Cullen D et al (2008) Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117:1423–1435

    PubMed  CAS  Google Scholar 

  106. Zhao YY, Feron O, Dessy C, Han X, Marchionni MA, Kelly RA (1999) Neuregulin signaling in the heart. Dynamic targeting of erbB4 to caveolar microdomains in cardiac myocytes. Circ Res 84:1380–1387

    PubMed  CAS  Google Scholar 

  107. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269

    PubMed  CAS  Google Scholar 

  108. Doggen K, Ray L, Mathieu M, McEntee K, Lemmens K, De Keulenaer GW (2008) Direct evidence for activation of the neuregulin-1/ErbB system inmyocardium of dogs with pacing-induced heart failure. Eur J Heart Fail Suppl 7:1

    Google Scholar 

  109. Xu Y, Li X, Zhou M (2009) Neuregulin-1/ErbB signaling: a druggable target for treating heart failure. Curr Opin Pharmacol 9: 214–219

    PubMed  CAS  Google Scholar 

  110. Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304:399–404

    PubMed  CAS  Google Scholar 

  111. Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO, Skolnik EY (2000) Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol 20:1537–1545

    PubMed  CAS  Google Scholar 

  112. Vercauteren M, Remy E, Devaux C, Dautreaux B et al (2007) Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation 115:e648

    Google Scholar 

  113. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    PubMed  CAS  Google Scholar 

  114. Clerk A, Sugden PH (2000) Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 86:1019–1023

    PubMed  CAS  Google Scholar 

  115. Meszaros JG, Gonzalez AM, Endo-Mochizuki Y, Villegas S, Villarreal F, Brunton LL (2000) Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol 278:C154–C162

    PubMed  CAS  Google Scholar 

  116. Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    PubMed  CAS  Google Scholar 

  117. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294: 1866–1870

    PubMed  CAS  Google Scholar 

  118. Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, Dalton N, Hammond HK (1999) Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 99:1618–1622

    PubMed  CAS  Google Scholar 

  119. Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY, Spellman M, Clopton P, Hammond HK (2004) Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 110:330–336

    PubMed  CAS  Google Scholar 

  120. Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond HK (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99:3099–3102

    PubMed  CAS  Google Scholar 

  121. Iwami G, Kawabe J, Ebina T, Cannon PJ, Homcy CJ, Ishikawa Y (1995) Regulation of adenylyl cyclase by protein kinase A. J Biol Chem 270:12481–12484

    PubMed  CAS  Google Scholar 

  122. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    PubMed  CAS  Google Scholar 

  123. Wing MR, Bourdon DM, Harden TK (2003) PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv 3:273–280

    PubMed  CAS  Google Scholar 

  124. Yu CH, Panagia V, Tappia PS, Liu SY, Takeda N, Dhalla NS (2002) Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure. Biochim Biophys Acta 1584:65–72

    PubMed  CAS  Google Scholar 

  125. Dent MR, Singal T, Dhalla NS, Tappia PS (2004) Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. J Cell Mol Med 8:526–536

    PubMed  CAS  Google Scholar 

  126. Uray IP, Connelly JH, Frazier OH, Taegtmeyer H, Davies PJ (2003) Mechanical unloading increases caveolin expression in the failing human heart. Cardiovasc Res 59:57–66

    PubMed  CAS  Google Scholar 

  127. Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 84:980–988

    PubMed  CAS  Google Scholar 

  128. Head BP, Patel HH, Roth DM, Lai NC, Niesman IR, Farquhar MG, Insel PA (2005) G-protein coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280:31036–31044

    PubMed  CAS  Google Scholar 

  129. Williams TM, Lisanti MP (2004) The Caveolin genes: from cell biology to medicine. Ann Med 36:584–595

    PubMed  CAS  Google Scholar 

  130. Jones WK, Brown M, Ren X, He S, McGuinness M (2003) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3:229–254

    PubMed  CAS  Google Scholar 

  131. Chandel NS, Schumacker PT (2000) Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88:1880–1889

    PubMed  CAS  Google Scholar 

  132. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–726

    PubMed  CAS  Google Scholar 

  133. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624

    PubMed  CAS  Google Scholar 

  134. Kacimi R, Long CS, Karliner JS (1997) Chronic hypoxia modulates the interleukin-1β stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation 96:1937–1943

    PubMed  CAS  Google Scholar 

  135. French S, Giulivi C, Balaban RS (2001) Nitric oxide synthase in porcine heart mitochondria: evidence for low physiological activity. Am J Physiol Heart Circ Physiol 280:H2863–H2867

    PubMed  CAS  Google Scholar 

  136. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT (2002) Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282:L1324–L1329

    PubMed  CAS  Google Scholar 

  137. Enomoto N, Koshikawa N, Gassmann M, Hayashi J, Takenaga K (2002) Hypoxic induction of hypoxia-inducible factor-1alpha and oxygen-regulated gene expression in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 297:346–352

    PubMed  CAS  Google Scholar 

  138. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:393–411

    PubMed  CAS  Google Scholar 

  139. Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180

    PubMed  CAS  Google Scholar 

  140. Bonnet D, Martin D, De Lonlay P et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100:2248–2253

    PubMed  CAS  Google Scholar 

  141. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB (2001) Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. Antioxid Redox Signal 3:71–79

    PubMed  CAS  Google Scholar 

  142. Lanni A, De Felice M, Lombardi A, Moreno M, Fleury C, Ricquier D, Goglia F (1997) Induction of UCP2 mRNA by thyroid hormones in rat heart. FEBS Lett 418:171–174

    PubMed  CAS  Google Scholar 

  143. Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983

    PubMed  CAS  Google Scholar 

  144. Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, Stepkowski SM, Davies PJ, Taegtmeyer H (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J 15:833–845

    PubMed  CAS  Google Scholar 

  145. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, Neubauer S, Clarke K (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    PubMed  CAS  Google Scholar 

  146. Spinale FG (2002) Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res 91:1082–1084

    PubMed  CAS  Google Scholar 

  147. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    PubMed  CAS  Google Scholar 

  148. Iwami K, Ashizawa N, Do YS, Graf K, Hsueh WA (1996) Comparison of ANG II with other growth factors on Egr-1 and matrix gene expression in cardiac fibroblasts. Am J Physiol 270:H2100–H2107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Calcium Signaling: Receptors, Effectors, and Other Signaling Pathways. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics