Skip to main content

Plant-Derived Anticancer Agents Used in Western and Oriental Medicine

  • Chapter
  • First Online:
Book cover Dietary Components and Immune Function

Part of the book series: Nutrition and Health ((NH))

Key Points

Cancer chemotherapeutic agents derived from higher plants are used in Western medicine. Secondary metabolites from plants are used in oriental medicine are utilized in anticancer therapy. Immunomodulatory small organic molecules from plant species are employed in Chinese traditional medicine are renewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  2. Chin Y-W, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8:E239–E253

    PubMed  CAS  Google Scholar 

  3. Oberlies NH, Kroll DJ (2004) Camptothecin and taxol, historic achievements in natural products research. J Nat Prod 67:129–135

    Article  PubMed  CAS  Google Scholar 

  4. Hartwell JL, Schrecker AW (2005) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916

    Article  Google Scholar 

  5. Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Molecules of interest: podophyllotoxin. Phytochemistry 54:115–120

    Article  PubMed  CAS  Google Scholar 

  6. Stahelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide. Cancer Res 51:5–15

    PubMed  CAS  Google Scholar 

  7. Bohlin L, Rosen B (1996) Podophyllotoxin derivatives: drug discovery and development. Drug Discov Today 1:343–351

    Article  CAS  Google Scholar 

  8. Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521

    Article  PubMed  CAS  Google Scholar 

  9. Noble RL (1990) The discovery of the vinca alkaloids – chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    CAS  Google Scholar 

  10. Dancey J, Steward WP (1995) The role of vindesine in oncology – recommendations after 10 years’ experience. Anticancer Drugs 6:625–636

    Article  PubMed  CAS  Google Scholar 

  11. Gregory RK, Smith IE (2000) Vinorelbine: a clinical review. Br J Cancer 82:1907–1913

    Article  PubMed  CAS  Google Scholar 

  12. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev 4:253–265

    Article  CAS  Google Scholar 

  13. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AI, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  14. Wall ME (1994) Wani MC Camptothecin and analogs: from discovery to clinic. In: Potmesil M, Pinedo H (eds) Camptothecins: new anticancer agents. CRC Press, Boca Raton, FL, pp 21–42

    Google Scholar 

  15. Hsiang Y-H, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  16. Hsiang Y-H, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complex as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082

    PubMed  CAS  Google Scholar 

  17. Ma MK, McLeod HL (2003) Lessons learned from the irinotecan metabolic pathway. Curr Med Chem 10:41–49

    Article  PubMed  CAS  Google Scholar 

  18. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  19. Kingston DGI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507–515

    Article  PubMed  CAS  Google Scholar 

  20. Montero A, Fossella F, Hortobagyi G, Valero V (2005) Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 6:229–239

    Article  PubMed  CAS  Google Scholar 

  21. Huang KC (2000) History of Chinese medicine. In: The pharmacology of Chinese herbs. CRC Press, Boca Raton, FL, pp 9–17.

    Google Scholar 

  22. Qicheng F (1980) Some current study and research approaches relating to the use of plants in the traditional Chinese medicine. J Ethnopharmacol 2:57–63

    Article  PubMed  CAS  Google Scholar 

  23. Han J (1988) Traditional Chinese medicine and the search for new antineoplastic drugs. J Ethnopharmacol 24:1–17

    Article  PubMed  CAS  Google Scholar 

  24. Ku K-Y, Tang T-C (1980) Several botanical sources of camptothecin – an antitumor alkaloid. Zhong Cao Yao 11:476–479

    CAS  Google Scholar 

  25. Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR (1981) Plant anticancer agents. XXI. Constituents of Merrilliodendron megacarpum. Planta Med 43:404–407

    Article  PubMed  CAS  Google Scholar 

  26. Zhou B-N, Hoch JM, Johnson RK, Mattern MR, Eng W-K, Ma J, Hecht SM, Newman DJ, Kingston DGI (2000) Use of COMPARE analysis to discover new natural product drugs: isolation of camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 63:1273–1276

    Article  PubMed  CAS  Google Scholar 

  27. Lee DH, Kim S-W, Suh C, Lee J-S, Lee JH, Lee S-J, Ryoo BY, Park K, Kim JS, Heo DS, Kim NK (2008) Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results of a multicenter early phase II study. Ann Oncol 19:123–127

    Article  PubMed  CAS  Google Scholar 

  28. Shi J-H, Zhu Z-Z, Hou S, Liu S-X, Han Z-Q, Sun C-X (2007) The clinical study of HC regimen chemotherapy consisted of hydroxy camptothecin and carboplatin for the senile patients with advanced non-small cell lung cancer. Linchuang Zhongliuxue Zazhi 12:498–500

    CAS  Google Scholar 

  29. Wu Z-H (2007) Clinical research of HCPT in combination with LV+5Fu-DDP regimen in treatment of advanced gastric cancer. Hainan Yixue 18:18–19

    CAS  Google Scholar 

  30. Paudler WW, Kerley GI, McKay J (1963) Alkaloids of Cephalotaxus drupacea and Cephalotaxus fortunei. J Org Chem 28:2194–2197

    Article  CAS  Google Scholar 

  31. Powell RG, Weisleder D, Smith CR Jr, Rohwedder WK (1970) Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett 11:815–818

    Article  PubMed  Google Scholar 

  32. Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM (2001) Homoharringtonine: history, current research, and future direction. Cancer 92:1591–1605

    Article  PubMed  CAS  Google Scholar 

  33. Itokawa H, Wang X, Lee K-H (2005) Homoharringtonine and related compounds. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, FL, pp 47–70

    Google Scholar 

  34. Meng H, Yang C, Jin J, Zhou Y, Qian W (2008) Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Leuk Lymphoma 49:1954–1962

    Article  PubMed  CAS  Google Scholar 

  35. Stewart JA, Krakoff IH (1985) Homoharringtonine: a phase I evaluation. Invest New Drugs 3:279–286

    Article  PubMed  CAS  Google Scholar 

  36. Quintas-Cardama A, Cortes J (2008) Homoharringtonine for the treatment of chronic myelogenous leukemia. Expert Opin Pharmacother 9:1029–1037

    Article  PubMed  CAS  Google Scholar 

  37. Xiao Z, Hao Y, Liu B, Qian L (2002) Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma 43:1763–1768

    Article  PubMed  CAS  Google Scholar 

  38. Deng B (1986) Direct colorimetric method for determination of indigo and indirubin in Qingdai. Zhong Cao Yao 17:163–164

    CAS  Google Scholar 

  39. Du D, Ceng Q (1981) Effect of indirubin on the incorporation of isotope labeled precursors into nucleic acid and protein of tumor tissues. Zhong Cao Yao 12:406–409

    CAS  Google Scholar 

  40. Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S (2004) Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol 130:627–635

    Article  PubMed  CAS  Google Scholar 

  41. Jautelat R, Brumby T, Schaefer M, Briem H, Eisenbrand G, Schwahn S, Krueger M, Luecking U, Prien O, Siemeister G (2005) From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. Chembiochem 6:531–540

    Article  PubMed  CAS  Google Scholar 

  42. Zuo M, Li Y, Wang H, Zhou J, Li H, Liu H, Liu H, Xin H, Zhang S, Chen X (2008) The antitumor activity of meisoindigo against human colorectal cancer HT-29 cells in vitro and in vivo. J Chemother 20:728–733

    CAS  Google Scholar 

  43. Cooperative Study Group of Phase III Clinical Trial on Meisoindigo, Tianjin, People’s Republic of China (1997) Phase II clinical trial on meisoindigo in the treatment of chronic myelogenous leukemia. Zhonghua Xue Ye Xue Za Zhi 18:69–72

    Google Scholar 

  44. Zhang J-S, Ding J, Tang Q-M, Li M, Zhao M, Lu L-J, Chen L-J, Yuan S-T (1999) Synthesis and antitumor activity of novel diterpenequinone salvicine and the analogs. Bioorg Med Chem Lett 9:2731–2736

    Article  PubMed  CAS  Google Scholar 

  45. Meng LH, Ding J (2001) Induction of bulk and c-myc P2 promoter-specific DNA damage by an anti-topoisomerase II agent salvicine is an early event leading to apoptosis in HL-60 cells. FEBS Lett 501:59–64

    Article  PubMed  CAS  Google Scholar 

  46. Lang J-Y, Chen H, Zhou J, Zhang Y-X, Zhang X-W, Li M-H, Lin L-P, Zhang J-S, Waalkes MP, Ding J (2005) Antimetastatic effect of salvicine on human breast cancer MDA-MB-435 orthotopic xenograft is closely related to Rho-dependent pathway. Clin Cancer Res 11:3455–3464

    Article  PubMed  CAS  Google Scholar 

  47. Cai Y, Lu J, Miao Z, Lin L, Ding J (2007) Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol Ther 6:1794–1799

    Article  PubMed  CAS  Google Scholar 

  48. Sun H-D, Lin Z-W, Qin C-Q, Chao J-H, Zhao Q-Z (1981) Studies on the chemical constituents of antitumor plant Rabdosia rubescens (Hemsl.) Hara. Yunnan Zhi Wu Yan Jiu 3:95–100

    CAS  Google Scholar 

  49. Fujita T, Takeda Y, Sun HD, Minami Y, Marunaka T, Takeda S, Yamada Y, Togo T (1988) Cytotoxic and antitumor activities of Rabdosia diterpenoids. Planta Med 54:414–417

    Article  PubMed  CAS  Google Scholar 

  50. Zhou G-B, Kang H, Wang L, Gao L, Liu P, Xie J, Zhang F-X, Weng X-Q, Shen Z-X, Chen J, Gu L-J, Yan M, Zhang D-E, Chen S-J, Wang Z-Y, Chen Z (2007) Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 109:3441–3450

    Article  PubMed  CAS  Google Scholar 

  51. Zhu Y, Xie L, Chen G, Wang H, Zhang R (2007) Effects of oridonin on proliferation of HT29 human colon carcinoma cell lines both in vitro and in vivo in mice. Pharmazie 62:439–444

    PubMed  CAS  Google Scholar 

  52. Wang RL (1993) A report of 40 cases of esophageal carcinoma surviving for more than 5 years after treatment with drugs. Zhonghua Zhong Liu Za Zhi 15:300–302

    PubMed  CAS  Google Scholar 

  53. Marks LS, DiPaola RS, Nelson P, Chen S, Heber D, Belldegrun AS, Lowe FC, Fan J, Leaders FE Jr, Pantuck AJ, Tyler VE (2002) PC-SPES: herbal formulation for prostate cancer. Urology 60:369–375

    Article  PubMed  Google Scholar 

  54. Meade-Tollin LC, Wijeratne EMK, Cooper D, Guild M, Jon E, Fritz A, Zhou G-X, Whitesell L, Liang J-Y, Gunatilaka AAL (2004) Ponicidin and oridonin are responsible for the antiangiogenic activity of Rabdosia rubescens, a constituent of the herbal supplement PC SPES. J Nat Prod 67:2–4

    Article  PubMed  CAS  Google Scholar 

  55. Xia GC, Zang JY, Lu XM, Xiao PG (1985) Resource utilization and herbal study of “malinzi” (Iris lactea Pall. var. chinensis). Yao Xue Xue Bao 20:316–319

    PubMed  CAS  Google Scholar 

  56. Li D-H, Hao X-G, Zhang S-K, Wang S-X, Liu R-Y, Ma K-S, Yu S-P, Jiang H, Guan J-F (1981) Antitumor effect and toxicity of irisquinone. Zhongguo Yao Li Xue Bao 2:131–134

    PubMed  CAS  Google Scholar 

  57. Wang X-W (1999) Irisquinone: antineoplastic, radiosensitizer. Drugs Future 24:613–617

    Article  CAS  Google Scholar 

  58. Zhu W, Sun W, Yu Y, Wang F, Wang S, Wang L (2008) The impact of radiosensitizer irisquinone on lung metastasis in H22-bearing mice. Jiang Su Yi Yao 34:176–178

    CAS  Google Scholar 

  59. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Murad E, Dubiel W, Soff G, Arbiser JL (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507

    Article  PubMed  CAS  Google Scholar 

  60. Shigemura K, Arbiser JL, Sun S-Y, Zayzafoon M, Johnstone PAS, Fujisawa M, Gotoh A, Weksler B, Zhau HE, Chung LWK (2007) Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer 109:1279–1289

    Article  PubMed  CAS  Google Scholar 

  61. Wolf I, O’Kelly J, Wakimoto N, Nguyen A, Amblard F, Karlan BY, Arbiser JL, Koeffler HP (2007) Honokiol, a natural biphenyl, inhibits in vitro and in vivo growth of breast cancer through induction of apoptosis and cell cycle arrest. Int J Oncol 30:1529–1537

    PubMed  CAS  Google Scholar 

  62. Li Z, Liu Y, Zhao X, Pan X, Yin R, Huang C, Chen L, Wei Y (2008) Honokiol, a natural therapeutic candidate, induces apoptosis and inhibits angiogenesis of ovarian tumor cells. Eur J Obstet Gynecol Reprod Biol 140:95–102

    Article  PubMed  CAS  Google Scholar 

  63. Jiang Q-Q, Fan L-Y, Yang G-L, Guo W-H, Hou W-L, Chen L-J, Wei Y-Q (2008) Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer 8:242

    Article  PubMed  Google Scholar 

  64. Wen J, Fu A-F, Chen L-J, Xie X-J, Yang G-L, Chen X-C, Wang Y-S, Li J, Chen P, Tang M-H, Shao XM, Lu Y, Zhao X, Wei Y-Q (2009) Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int J Cancer 124:2709–2718

    Article  PubMed  CAS  Google Scholar 

  65. Battle TE, Arbiser J, Frank DA (2005) The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 106:690–697

    Article  PubMed  CAS  Google Scholar 

  66. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Le Gouill S, Chauhan D, Tamura K, Arbiser J, Anderson KC (2005) Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood 106:1794–1800

    Article  PubMed  CAS  Google Scholar 

  67. Owen T-Y, Wang S-Y, Chang S-Y, Lu FL, Hsu B (1976) A new antitumor substance – lycobetaine (AT-1840) Kexue Tongbao 21, 285–287

    CAS  Google Scholar 

  68. Zhang S-Y, Lu F-L, Yang J-L, Wang L-J, Xu B (1981) Effect on animal tumors and toxicity of lycobetaine acetate. Zhongguo Yao Li Xue Bao 2:41–45

    PubMed  CAS  Google Scholar 

  69. Liu J, Yang S, Xu B (1989) Characteristics of the interaction of lycobetaine with DNA. Zhongguo Yao Li Xue Bao 10:437–442

    PubMed  CAS  Google Scholar 

  70. Liu J, Yang S, Xu B (1990) Effects of lycobetaine on chromatin structure and activity of murine hepatoma cells. Sci China B 33:1459–1465

    PubMed  CAS  Google Scholar 

  71. Chen J, Chen K, Jiang H, Lin M, Ji R (1997) Theoretical investigation on interaction binding of analogs of AT-1840 to double-stranded polynucleotide. Prog Nat Sci 7:329–335

    Google Scholar 

  72. Barthelmes HU, Niederberger E, Roth T, Schulte K, Tang WC, Boege F, Fiebig H-H, Eisenbrand G, Marko D (2001) Lycobetaine acts as a selective topoisomerase II poison and inhibits the growth of human tumour cells. Br J Cancer 85:1585–1591

    Article  PubMed  CAS  Google Scholar 

  73. Xu B (1991) Recent advances in pharmacologic study of natural anticancer agents in China. Mem Inst Oswaldo Cruz 86:51–54

    Article  PubMed  Google Scholar 

  74. Ho LJ, Lai JH (2004) Chinese herbs as immunomodulators and potential disease-modifying antirheumatic drugs in autoimmune disorders. Curr Drug Metab 5:181–192

    Article  PubMed  CAS  Google Scholar 

  75. Eichler F, Krueger GR (1994) Effects of non-specific immunostimulants (echinacin, isoprinosine and thymus factors) on the infection and antigen expression in herpes virus-6 exposed human lymphoid cells. In Vivo 8:565–575

    PubMed  CAS  Google Scholar 

  76. Wynn JL, Neu J, Moldawe LL, Levy O (2009) Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J Perinatol 29:79–88

    Article  PubMed  CAS  Google Scholar 

  77. Broide DH (2009) Immunomodulation of allergic disease. Annu Rev Med 60:279–291

    Article  PubMed  CAS  Google Scholar 

  78. Sicherer SH, Sampson HA (2009) Food allergy: recent advances in pathophysiology and treatment. Annu Rev Med 60:261–277

    Article  PubMed  CAS  Google Scholar 

  79. Chen P, Lu YB, Lin CC (1999) Concepts and theories of Traditional Chinese Medicine advanced TCM series, advanced TCM series, vol 2. Press of Science, Beijing, pp 50–150

    Google Scholar 

  80. Xu GJ, He HX, Xu LS, Jing RY (1996) Chinese Materia Medica. The Press of Chinese Medical Technology, Beijing, pp 250–310, 1038, 1605

    Google Scholar 

  81. Larsen MW, Moser C, Hoiby N, Song ZJ, Kharazmi A (2004) Ginseng modulates the immune response by induction of interleukin-12 production. APMIS 112:369–373

    Article  PubMed  CAS  Google Scholar 

  82. Pannacci M, Lucini V, Colleoni F, Martucci C, Grosso S, Sacerdote P, Scaglione F (2006) Panax ginseng C.A. Mayer G115 modulates pro-inflammatory cytokine production in mice throughout the increase of macrophage toll-like receptor 4 expression during physical stress. Brain Behav Immun 20:546–551

    Article  PubMed  CAS  Google Scholar 

  83. Lee DCW, Yang CLH, Chik SCC, Li JCB, Rong JH, Chan GCF, Lau ASY (2009) Bioactivity-guided identification and cell signaling technology to delineate the immunomodulatory effects of Panax ginseng on human promonocytic U937 cells. J Transl Med 7:34

    Article  PubMed  Google Scholar 

  84. Sun WJ, Shen JF (1996) Brief handbook of naturally bioactive components. The Press of Chinese Medical Technology, Beijing, pp 200–380

    Google Scholar 

  85. Tang W, Yang Y, Zhang F, Li YC, Zhou R, Wang JX, Zhu YN, Li XY, Yang YF, Zuo JP (2005) Prevention of graft-versus-host disease by a novel immunosuppressant, (5R)-5-hydroxytriptolide (LLDT-8), through expansion of regulatory T cells. Int Immunopharmacol 5:1904–1913

    Article  PubMed  CAS  Google Scholar 

  86. Ma J, Dey M, Yang H, Poulev A, Pouleva R, Dorn R, Lipsky PE, Kennelly EJ, Raskin I (2007) Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry 68:1172–1178

    Article  PubMed  CAS  Google Scholar 

  87. Lu Y, Wang WJ, Leng JH, Cheng LF, Feng L, Yao HP (2008) Inhibitory effect of triptolide on interleukin-18 and its receptor in rheumatoid arthritis synovial fibroblasts. Inflamm Res 57:260–265

    Article  PubMed  CAS  Google Scholar 

  88. Mu Y, Zhang JN, Zhang SM, Zhou HH, Toma D, Ren SR, Huang L, Yaramus M, Baum A, Venkataramanan R, Xie W (2006) Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill.) and Gancao (Glycyrrhiza uralensis Fisch.) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther 316:1369–1377

    Article  PubMed  CAS  Google Scholar 

  89. Ma DY, Li QD, Du J, Liu YQ, Liu SW, Shan AS (2006) Influence of mannan oligosaccharide, Ligustrum lucidum and Schisandra chinensis on parameters of antioxidative and immunological status of broilers. Arch Anim Nutr 60:467–476

    Article  PubMed  CAS  Google Scholar 

  90. Guo LY, Hung TM, Bae KH, Shin EM, Zhou HY, Hong YN, Kang SS, Kim HP, Kim YS (2008) Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol 591:293–299

    Article  PubMed  CAS  Google Scholar 

  91. Srivastava KC, Mustafa TG (1989) Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses 29:25–28

    Article  PubMed  CAS  Google Scholar 

  92. Aktan F, Henness S, Tran VH, Duke CC, Roufogalis BD, Ammit AJ (2006) Gingerol metabolite and a synthetic analogue capsarol inhibit macrophage NF-κB-mediated iNOS gene expression and enzyme activity. Planta Med 72:727–734

    Article  PubMed  CAS  Google Scholar 

  93. Sun HX, Pan HJ (2006) Immunological adjuvant effect of Glycyrrhiza uralensis saponins on the immune responses to ovalbumin in mice. Vaccine 24:1914–1920

    Article  PubMed  CAS  Google Scholar 

  94. Shin EM, Zhou HY, Guo LY, Kim JA, Lee SH, Merfort I, Kang SS, Kim HS, Kim S, Kim YS (2008) Anti-inflammatory effects of glycyrol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol 8:1524–1532

    Article  PubMed  CAS  Google Scholar 

  95. Barenboim GM, Sterlina AG, Bebyakova NV, Ribokas AA, Fuks BB (1986) Investigation of the pharmacokinetics and mechanism of action of Eleutherococcus glycosides. VIII. Investigation of natural killer activation by the Eleutherococcus extract. Khim Farm Zh 20:914–917

    CAS  Google Scholar 

  96. Shen ML, Zhai SK, Chen HL, Luo YD, Tu GR, Ou DW (1991) Immunopharmacological effects of polysaccharides from Acanthopanax senticosus on experimental animals. Int J Immunopharmacol 13:549–554

    Article  PubMed  CAS  Google Scholar 

  97. Sun HX, Zheng QF (2005) Haemolytic activities and adjuvant effect of Gynostemma pentaphyllum saponins on the immune responses to ovalbumin in mice. Phytother Res 19:895–900

    Article  PubMed  CAS  Google Scholar 

  98. Noori S, Hassan ZM, Rezaei B, Rustaiyan A, Habibi Z, Fallahian F (2008) Artemisinin can inhibit the calmodulin-mediated activation of phosphodiesterase in comparison with cyclosporin A. Int Immunopharmacol 8:1744–1747

    Article  PubMed  CAS  Google Scholar 

  99. Chinen J, Finkelman F, Shearer T (2006) Advances in basic and clinical immunology. J Allergy Clin Immunol 118:489–495

    Article  PubMed  CAS  Google Scholar 

  100. Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hänsel W, Chandy KG (2004) Kvl 3-blocking 5-phenylalkoxypsoralens, a new class of immunomodulators. Mol Pharmacol 65:1364–1374

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Douglas Kinghorn PHD. D.SC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, AR., Deng, Y., Ren, Y., Pan, L., Kinghorn, A.D. (2010). Plant-Derived Anticancer Agents Used in Western and Oriental Medicine. In: Watson, R., Zibadi, S., Preedy, V. (eds) Dietary Components and Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-061-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-061-8_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-060-1

  • Online ISBN: 978-1-60761-061-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics