Skip to main content

DNA Replication Initiation

  • Protocol
  • First Online:
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 521))

Summary

DNA replication is fundamental to cellular life on earth, and replication initiation provides the primary point of control over this process. Replication initiation in all organisms involves the interaction of initiator proteins with one or more origins of replication in the DNA, with subsequent regulated assembly of two replisome complexes at each origin, melting of the DNA, and primed initiation of DNA synthesis on leading and lagging strands. Archaea and Eukarya share homologous systems for DNA replication initiation, but differ in the complexity of these; Bacteria appear to have analogous, rather than homologous, mechanisms for replication initiation. This chapter provides an overview of current knowledge of initiation of chromosomal DNA replication in the three domains of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1.  Watson, J. D., and Crick, F. H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  2. Forterre, P., and Elie, C. (1993) Chromosome structure, DNA topoisomerases, and DNA polymerases in archaeabacteria, in The Biochemistry of Archaea (Archaebacteria) (Kates, M., Kushner, D. J., and Matheson, A. T., eds.), Elsevier, Amsterdam, pp. 325–361.

    Chapter  Google Scholar 

  3. Stillman, B. (1994) Smart machines at the DNA replication fork. Cell 78, 725–728.

    Article  PubMed  CAS  Google Scholar 

  4. Edgell, D. R., and Doolittle, W. F. (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998.

    Article  PubMed  CAS  Google Scholar 

  5. Leipe, D. D., Aravind, L., and Koonin, E. V. (1999) Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401.

    Article  PubMed  CAS  Google Scholar 

  6. Bell, S. D. (2006) Archaeal, bacterial, and eukaryal DNA replication machines, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 273–293.

    Google Scholar 

  7. Jacob, F., Brenner, S., and Cuzin, F. (1963) On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348.

    Article  CAS  Google Scholar 

  8.  8. Bell, S. P., and Stillman, B. (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134.

    Article  PubMed  CAS  Google Scholar 

  9.  9. Huberman, J. A., and Riggs, A. D. (1968) On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341.

    Article  PubMed  CAS  Google Scholar 

  10.  Van’t Hof, J. (1975) DNA fiber replication in chromosomes of a higher plant (Pisum sativum). Exp. Cell Res. 93, 95–104.

    Article  PubMed  Google Scholar 

  11. Cvetic, C., and Walter, J. C. (2005) Eukaryotic origins of DNA replication: could you please be more specific? Semin. Cell Dev. Biol. 16, 343–353.

    Article  PubMed  CAS  Google Scholar 

  12. Aladjem, M. I., Falaschi, A., and Kowalski, D. (2006) Eukaryotic DNA replication origins, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 31–61.

    Google Scholar 

  13. Bell, S. P. (2002) The origin recognition complex: from simple origins to complex functions. Genes Dev. 16, 659–672.

    Article  PubMed  CAS  Google Scholar 

  14. Diffley, J. F. (2004) Regulation of early events in chromosome replication. Curr. Biol. 14, R778–R786.

    Article  PubMed  CAS  Google Scholar 

  15. Lygerou, Z., and Nurse, P. (1999) The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J. Cell Sci. 112, 3703–3712.

    PubMed  CAS  Google Scholar 

  16. Li, C. J., and DePamphilis, M. L. (2002) Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol. Cell. Biol. 22, 105–116.

    Article  PubMed  Google Scholar 

  17. Mendez, J., Zou-Yang, X. H., Kim, S. Y., Hidaka, M., Tansey, W. P., and Stillman, B. (2002) Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491.

    Article  PubMed  CAS  Google Scholar 

  18. Stinchcomb, D. T., Thomas, M., Kelly, J., Selker, E., and Davis, R. W. (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. USA 77, 4559–4563.

    Article  PubMed  CAS  Google Scholar 

  19. Maundrell, K., Wright, A. P., Piper, M., and Shall, S. (1985) Evaluation of heterologous ARS activity in S. cerevisiae using cloned DNA from S. pombe. Nucleic Acids Res. 13, 3711–3722.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, D. G., and Bell, S. P. (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol. Cell. Biol. 17, 7159–7168.

    PubMed  CAS  Google Scholar 

  21. Chuang, R. Y., and Kelly, T. J. (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl. Acad. Sci. USA 96, 2656–2661.

    Article  PubMed  CAS  Google Scholar 

  22. Moon, K. Y., Kong, D., Lee, J. K., Raychaudhuri, S., and Hurwitz, J. (1999) Identification and reconstitution of the origin recognition complex from Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 96, 12367–12372.

    Article  PubMed  CAS  Google Scholar 

  23. Costa, S., and Blow, J. J. (2007) The elusive determinants of replication origins. EMBO Rep. 8, 332–334.

    Article  PubMed  CAS  Google Scholar 

  24. Robinson, N. P., and Bell, S. D. (2005) Origins of DNA replication in the three domains of life. FEBS J. 272, 3757–3766.

    Article  PubMed  CAS  Google Scholar 

  25. Méchali, M., and Kearsey, S. (1984) Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64.

    Article  PubMed  Google Scholar 

  26. Blow, J. J., Gillespie, P. J., Francis, D., and Jackson, D. A. (2001) Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15–25.

    Article  PubMed  CAS  Google Scholar 

  27. Maine, G. T., Sinha, P., and Tye, B. K. (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106, 365–385.

    PubMed  CAS  Google Scholar 

  28. Diffley, J. F., Cocker, J. H., Dowell, S. J., and Rowley, A. (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316.

    Article  PubMed  CAS  Google Scholar 

  29. Weinreich, M., Liang, C., and Stillman, B. (1999) The Cdc6p nucleotide-binding motif is required for loading Mcm proteins onto chromatin. Proc. Natl. Acad. Sci. USA 96, 441–446.

    Article  PubMed  CAS  Google Scholar 

  30. Raghuraman, M. K., Winzeler, E. A., Collingwood, D., Hunt, S., Wodicka, L., Conway, A., Lockhart, D. J., Davis, R. W., Brewer, B. J., and Fangman, W. L. (2001) Replication dynamics of the yeast genome. Science 294, 115–121.

    Article  PubMed  CAS  Google Scholar 

  31. Wyrick, J. J., Aparicio, J. G., Chen, T., Barnett, J. D., Jennings, E. G., Young, R. A., Bell, S. P., and Aparicio, O. M. (2001) Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360.

    Article  PubMed  CAS  Google Scholar 

  32. Yabuki, N., Terashima, H., and Kitada, K. (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789.

    Article  PubMed  CAS  Google Scholar 

  33. DePamphilis, M. L. (1993) Origins of DNA replication that function in eukaryotic cells. Curr. Opin. Cell Biol. 5, 434–441.

    Article  PubMed  CAS  Google Scholar 

  34. Anglana, M., Apiou, F., Bensimon, A., and Debatisse, M. (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394.

    Article  PubMed  CAS  Google Scholar 

  35. Walter, J. C., and Araki, H. (2006) Activation of pre-replication complexes, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 89–104.

    Google Scholar 

  36. Gambus, A., Jones, R. C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R. D., and Labib, K. (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8, 358–366.

    Article  PubMed  CAS  Google Scholar 

  37. Moore, K., and Aves, S. J. (2008) Mcm10 and DNA replication in fission yeast, in The Eukaryotic Cell Cycle (Bryant, J. A., and Francis, D., eds.), Taylor and Francis, Abingdon, pp. 45–69.

    Google Scholar 

  38. Gregan, J., Lindner, K., Brimage, L., Franklin, R., Namdar, M., Hart, E. A., Aves, S. J., and Kearsey, S. E. (2003) Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol. Biol. Cell 14, 3876–3887.

    Article  PubMed  CAS  Google Scholar 

  39. Wohlschlegel, J. A., Dhar, S. K., Prokhorova, T. A., Dutta, A., and Walter, J. C. (2002) Xenopus Mcm10 binds to origins of DNA replication after Mcm2–7 and stimulates origin binding of Cdc45. Mol. Cell 9, 233–240.

    Article  PubMed  CAS  Google Scholar 

  40. Sawyer, S. L., Cheng, I. H., Chai, W., and Tye, B. K. (2004) Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J. Mol. Biol. 340, 195–202.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, J. K., Seo, Y. S., and Hurwitz, J. (2003) The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc. Natl. Acad. Sci. USA 100, 2334–2339.

    Article  PubMed  CAS  Google Scholar 

  42. Kanemaki, M., Sanchez-Diaz, A., Gambus, A., and Labib, K. (2003) Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–724.

    Article  PubMed  CAS  Google Scholar 

  43. Takayama, Y., Kamimura, Y., Okawa, M., Muramatsu, S., Sugino, A., and Araki, H. (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17, 1153–1165.

    Article  PubMed  CAS  Google Scholar 

  44. Moyer, S. E., Lewis, P. W., and Botchan, M. R. (2006) Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236–10241.

    Article  PubMed  CAS  Google Scholar 

  45. Pacek, M., Tutter, A. V., Kubota, Y., Takisawa, H., and Walter, J. C. (2006) Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21, 581–587.

    Article  PubMed  CAS  Google Scholar 

  46. Kanemaki, M., and Labib, K. (2006) Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J. 25, 1753–1763.

    Article  PubMed  CAS  Google Scholar 

  47. Mimura, S., Masuda, T., Matsui, T., and Takisawa, H. (2000) Central role for Cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5, 439–452.

    Article  PubMed  CAS  Google Scholar 

  48. Walter, J., and Newport, J. (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627.

    Article  PubMed  CAS  Google Scholar 

  49. Noguchi, E., Shanahan, P., Noguchi, C., and Russell, P. (2002) CDK phosphorylation of Drc1 regulates DNA replication in fission yeast. Curr. Biol. 12, 599–605.

    Article  PubMed  CAS  Google Scholar 

  50. Masumoto, H., Muramatsu, S., Kamimura, Y., and Araki, H. (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655.

    Article  PubMed  CAS  Google Scholar 

  51. Zegerman, P., and Diffley, J. F. (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285.

    Article  PubMed  CAS  Google Scholar 

  52. Tanaka, S., Umemori, T., Hirai, K., Muramatsu, S., Kamimura, Y., and Araki, H. (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332.

    Article  PubMed  CAS  Google Scholar 

  53. Yabuuchi, H., Yamada, Y., Uchida, T., Sunathvanichkul, T., Nakagawa, T., and Masukata, H. (2006) Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J. 25, 4663–4674.

    Article  PubMed  CAS  Google Scholar 

  54. Van Hatten, R. A., Tutter, A. V., Holway, A. H., Khederian, A. M., Walter, J. C., and Michael, W. M. (2002) The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J. Cell Biol. 159, 541–547.

    Article  PubMed  CAS  Google Scholar 

  55. Hashimoto, Y., and Takisawa, H. (2003) Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J. 22, 2526–2535.

    Article  PubMed  CAS  Google Scholar 

  56. McFarlane, R. J., Carr, A. M., and Price, C. (1997) Characterisation of the Schizosaccharomyces pombe rad4/cut5 mutant phenotypes: dissection of DNA replication and G2 checkpoint control function. Mol. Gen. Genet. 255, 332–340.

    Article  PubMed  CAS  Google Scholar 

  57. Kamimura, Y., Tak, Y. S., Sugino, A., and Araki, H. (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20, 2097–2107.

    Article  PubMed  CAS  Google Scholar 

  58. Nakajima, R., and Masukata, H. (2002) SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol. Biol. Cell 13, 1462–1472.

    Article  PubMed  CAS  Google Scholar 

  59. Fien, K., Cho, Y. S., Lee, J. K., Raychaudhuri, S., Tappin, I., and Hurwitz, J. (2004) Primer utilization by DNA polymerase α-primase is influenced by its interaction with Mcm10p. J. Biol. Chem. 279, 16144–16153.

    Article  PubMed  CAS  Google Scholar 

  60. Ricke, R. M., and Bielinsky, A. K. (2004) Mcm10 regulates the stability and chromatin association of DNA polymerase-α. Mol. Cell 16, 173–185.

    Article  PubMed  CAS  Google Scholar 

  61. Yang, X., Gregan, J., Lindner, K., Young, H., and Kearsey, S. E. (2005) Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol. Biol. 6, 13.

    Article  PubMed  CAS  Google Scholar 

  62. Aparicio, O. M., Stout, A. M., and Bell, S. P. (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl. Acad. Sci. USA 96, 9130–9135.

    Article  PubMed  CAS  Google Scholar 

  63. Uchiyama, M., Griffiths, D., Arai, K., and Masai, H. (2001) Essential role of Sna41/Cdc45 in loading of DNA polymerase α onto minichromosome maintenance proteins in fission yeast. J. Biol. Chem. 276, 26189–26196.

    Article  PubMed  CAS  Google Scholar 

  64. Mimura, S., and Takisawa, H. (1998) Xenopus Cdc45-dependent loading of DNA polymerase α onto chromatin under the control of S-phase cdk. EMBO J. 17, 5699–5707.

    Article  PubMed  CAS  Google Scholar 

  65. Das-Bradoo, S., Ricke, R. M., and Bielinsky, A. K. (2006) Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol. Cell. Biol. 26, 4806–4817.

    Article  PubMed  CAS  Google Scholar 

  66. Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E., and Kunkel, T. A. (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317, 127–130.

    Article  PubMed  CAS  Google Scholar 

  67. Araki, H., Leem, S. H., Phongdara, A., and Sugino, A. (1995) Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 92, 11791–11795.

    Article  PubMed  CAS  Google Scholar 

  68. Masumoto, H., Sugino, A., and Araki, H. (2000) Dpb11 controls the association between DNA polymerases α and ε and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817.

    Article  PubMed  CAS  Google Scholar 

  69. Mäkiniemi, M., Hillukkala, T., Tuusa, J., Reini, K., Vaara, M., Huang, D., Pospiech, H., Majuri, I., Westerling, T., Mäkelä, T. P., and Syväoja, J. E. (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J. Biol. Chem. 276, 30399–30406.

    Article  PubMed  Google Scholar 

  70. Seki, T., Akita, M., Kamimura, Y., Muramatsu, S., Araki, H., and Sugino, A. (2006) GINS is a DNA polymerase ε accessory factor during chromosomal DNA replication in budding yeast. J. Biol. Chem. 281, 21422–21432.

    Article  PubMed  CAS  Google Scholar 

  71. Sclafani, R. A. (2000) Cdc7p-Dbf4p becomes famous in the cell cycle. J. Cell Sci. 113, 2111–2117.

    PubMed  CAS  Google Scholar 

  72. Sheu, Y. J., and Stillman, B. (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 24, 101–113.

    Article  PubMed  CAS  Google Scholar 

  73. Takahashi, T. S., and Walter, J. C. (2005) Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev. 19, 2295–2300.

    Article  PubMed  CAS  Google Scholar 

  74. Kearsey, S. E., and Cotterill, S. (2003) Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol. Cell 12, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  75. Nishitani, H., and Lygerou, Z. (2004) DNA replication licensing. Front. Biosci. 9, 2115–2132.

    Article  PubMed  CAS  Google Scholar 

  76. Blow, J. J., and Dutta, A. (2005) Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476–486.

    Article  PubMed  CAS  Google Scholar 

  77. Arias, E. E., and Walter, J. C. (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497–518.

    Article  PubMed  CAS  Google Scholar 

  78. Schwob, E., and Labib, K. (2006) Regulating initiation events in yeasts, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 295–311.

    Google Scholar 

  79. DePamphilis, M. L., and Blow, J. J. (2006) Regulating initiation events in Metazoa, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 313–334.

    Google Scholar 

  80. Takeda, D. Y., Parvin, J. D., and Dutta, A. (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J. Biol. Chem. 280, 23416–23423.

    Article  PubMed  CAS  Google Scholar 

  81. Arias, E. E., and Walter, J. C. (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat. Cell Biol. 8, 84–90.

    Article  PubMed  CAS  Google Scholar 

  82. McGarry, T. J., and Kirschner, M. W. (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  83. Donaldson, A. D., and Schildkraut, C. L. (2006) Temporal order of DNA replication, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 197–231.

    Google Scholar 

  84. Ferguson, B. M., Brewer, B. J., Reynolds, A. E., and Fangman, W. L. (1991) A yeast origin of replication is activated late in S phase. Cell 65, 507–515.

    Article  PubMed  CAS  Google Scholar 

  85. Ferguson, B. M., and Fangman, W. L. (1992) A position effect on the time of replication origin activation in yeast. Cell 68, 333–339.

    Article  PubMed  CAS  Google Scholar 

  86. Stubblefield, E. (1975) Analysis of the replication pattern of Chinese hamster chromosomes using 5-bromodeoxyuridine suppression of 33258 Hoechst fluorescence. Chromosoma 53, 209–221.

    Article  PubMed  CAS  Google Scholar 

  87. Yompakdee, C., and Huberman, J. A. (2004) Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J. Biol. Chem. 279, 42337–42344.

    Article  PubMed  CAS  Google Scholar 

  88. Schübeler, D., Scalzo, D., Kooperberg, C., van Steensel, B., Delrow, J., and Groudine, M. (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 32, 438–442.

    Article  PubMed  CAS  Google Scholar 

  89. Watanabe, Y., Fujiyama, A., Ichiba, Y., Hattori, M., Yada, T., Sakaki, Y., and Ikemura, T. (2002) Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11, 13–21.

    Article  PubMed  CAS  Google Scholar 

  90. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J., and Grunstein, M. (2002) Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  91. Zappulla, D. C., Sternglanz, R., and Leatherwood, J. (2002) Control of replication timing by a transcriptional silencer. Curr. Biol. 12, 869–875.

    Article  PubMed  CAS  Google Scholar 

  92. Lin, C. M., Fu, H., Martinovsky, M., Bouhassira, E., and Aladjem, M. I. (2003) Dynamic alterations of replication timing in mammalian cells. Curr. Biol. 13, 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  93. Zhou, J., Ermakova, O. V., Riblet, R., Birshtein, B. K., and Schildkraut, C. L. (2002) Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol. Cell. Biol. 22, 4876–4889.

    Article  PubMed  CAS  Google Scholar 

  94. Gilbert, D. M. (2001) Nuclear position leaves its mark on replication timing. J. Cell Biol. 152, F11–F15.

    Article  PubMed  CAS  Google Scholar 

  95. Norio, P., Kosiyatrakul, S., Yang, Q., Guan, Z., Brown, N. M., Thomas, S., Riblet, R., and Schildkraut, C. L. (2005) Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575–587.

    Article  PubMed  CAS  Google Scholar 

  96. Costa, S., and Blow, J. J. (2007) The elusive determinants of replication origins. EMBO Rep 8, 332–334.

    Article  PubMed  CAS  Google Scholar 

  97. Fanning, E., and Pipas, J. M. (2006) Polyomavirus, in DNA Replication and Human Disease (DePamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 627–661.

    Google Scholar 

  98. Li, D., Zhao, R., Lilyestrom, W., Gai, D., Zhang, R., DeCaprio, J. A., Fanning, E., Jochimiak, A., Szakonyi, G., and Chen, X. S. (2003) Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518.

    Article  PubMed  CAS  Google Scholar 

  99. Sclafani, R. A., Fletcher, R. J., and Chen, X. S. (2004) Two heads are better than one: regulation of DNA replication by hexameric helicases. Genes Dev. 18, 2039–2045.

    Article  PubMed  CAS  Google Scholar 

  100. Robinson, N. P., and Bell, S. D. (2005) Origins of DNA replication in the three domains of life. FEBS J 272, 3757–3766.

    Article  PubMed  CAS  Google Scholar 

  101. Robinson, N. P., Dionne, I., Lundgren, M., Marsh, V. L., Bernander, R., and Bell, S. D. (2004) Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116, 25–38.

    Article  PubMed  CAS  Google Scholar 

  102. Singleton, M. R., Morales, R., Grainge, I., Cook, N., Isupov, M. N., and Wigley, D. B. (2004) Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J. Mol. Biol. 343, 547–557.

    Article  PubMed  CAS  Google Scholar 

  103. Barry, E. R., and Bell, S. D. (2006) DNA replication in the archaea. Microbiol. Mol. Biol. Rev. 70, 876–887.

    Article  PubMed  CAS  Google Scholar 

  104. Pape, T., Meka, H., Chen, S., Vicentini, G., van Heel, M., and Onesti, S. (2003) Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep. 4, 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  105. Fletcher, R. J., Bishop, B. E., Leon, R. P., Sclafani, R. A., Ogata, C. M., and Chen, X. S. (2003) The structure and function of MCM from archaeal M. thermoautotrophicum. Nat. Struct. Biol. 10, 160–167.

    Article  PubMed  CAS  Google Scholar 

  106. Marians, K. J. (1992) Prokaryotic DNA replication. Annu. Rev. Biochem. 61, 673–719.

    Article  PubMed  CAS  Google Scholar 

  107. Davey, M. J., Fang, L., McInerney, P., Georgescu, R. E., and O’Donnell, M. (2002) The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J. 21, 3148–3159.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Karen Moore for helpful comments on this chapter and to apologise to the many authors whose work I have not been able to refer to because of space limitations in this outline review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Aves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aves, S.J. (2009). DNA Replication Initiation. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-815-7_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-814-0

  • Online ISBN: 978-1-60327-815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics