Skip to main content

Mild Stress and Life Extension in Drosophila melanogaster

  • Chapter
  • First Online:
Book cover Life-Span Extension

Part of the book series: Aging Medicine ((AGME))

Abstract

Being subjected to a mild stress can increase resistance to a stronger stress, but the idea of using mild stress to improve aging has not been systematically assessed until recent years. Several studies in the fly Drosophila melanogaster have shown that various mild stresses (hypergravity, heat, cold, irradiation) increase longevity; some mild stresses also increase the resistance to strong stresses (e.g., heat) and delay behavioral aging. The synthesis of the 70 kDa heat shock protein can explain the resistance to heat but not the increased longevity. The increased longevity induced by hypergravity is, however, not explained by the synthesis of the antioxidant enzymes superoxide dismutase and catalase. Therefore, for the time being, no explanation exists for the increased longevity and the delayed behavioral aging induced by a mild stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

g:

Gravity

HG:

Hypergravity

Hsp:

Heat shock protein

SOD:

Superoxide dismutase

References

  1. Robine JM, Michel JP. Looking forward to a general theory on population aging. J Gerontol Biol Sci 2004;59A:590–7.

    Google Scholar 

  2. Robine JM, Vaupel JW, Jeune B, Allard M, eds. Longevity: To the limits and beyond. Berlin: Springer, 1997.

    Google Scholar 

  3. Krebs RA, Loeschcke V. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J Evol Biol 1994;7:39–49.

    Article  Google Scholar 

  4. Calabrese EJ, Baldwin LA. Reevaluation of the fundamental dose-response relationship. Bioscience 1999;49:725–32.

    Article  Google Scholar 

  5. Le Bourg E, Minois N, Bullens P, Baret P. A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 2000;1:145–55.

    Article  CAS  PubMed  Google Scholar 

  6. Le Bourg E, Minois N. Increased longevity and resistance to heat shock in Drosophila melanogaster flies exposed to hypergravity. C R Acad Sci III 1997;320:215–21.

    CAS  PubMed  Google Scholar 

  7. Le Bourg E, Valenti P, Payre F. Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology 2002;3:355–64.

    Article  CAS  PubMed  Google Scholar 

  8. Le Bourg E, Toffin E, Massé A. Male Drosophila melanogaster flies exposed to hypergravity at young age are protected against a non-lethal heat shock at middle age but not against behavioral impairments due to this shock. Biogerontology 2004;5:431–43.

    Article  PubMed  Google Scholar 

  9. Le Bourg E, Minois N. A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Exp Gerontol 1999;34:157–72.

    Article  CAS  PubMed  Google Scholar 

  10. Minois N, Le Bourg E. Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mech Ageing Dev 1999;109:53–64.

    Article  CAS  PubMed  Google Scholar 

  11. Minois N, Guinaudy MJ, Payre F, Le Bourg E. HSP70 induction may explain the long-lasting resistance to heat of Drosophila melanogaster having lived in hypergravity. Mech Ageing Dev 1999;109:65–77.

    Article  CAS  PubMed  Google Scholar 

  12. Le Bourg E. Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Naturwissenschaften 2005;92:293–6.

    Article  PubMed  Google Scholar 

  13. Le Bourg E. Three mild stresses known to increase longevity in Drosophila melanogaster flies do not increase resistance to oxidative stress. Am J Pharmacol Toxicol 2008;3:137–43.

    Article  Google Scholar 

  14. Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW. Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol Biol Sci 1997;52A:B48–B52.

    Google Scholar 

  15. Kuether K, Arking R. Drosophila selected for extended longevity are more sensitive to heat shock. Age 1999;22:175–80.

    Article  Google Scholar 

  16. Minois N, Khazaeli AA, Curtsinger JW. Locomotor activty as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Gerontol 2001;36:1137–53.

    Article  CAS  PubMed  Google Scholar 

  17. Minois N, Vaynberg S. Fecundity and life span in transgenic Drosophila melanogaster overexpressing hsp70. Biogerontology 2002;3:301–6.

    Article  CAS  PubMed  Google Scholar 

  18. Le Bourg E, Valenti P, Lucchetta P, Payre F. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2001;2:155–64.

    Article  CAS  PubMed  Google Scholar 

  19. Hercus MJ, Loeschcke V, Rattan SIS. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 2003;4:149–56.

    Article  CAS  PubMed  Google Scholar 

  20. Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 2007;42:11239.

    Article  Google Scholar 

  21. Dahlgaard J, Loeschcke V, Michalak P, Justesen J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol 1998;12:786–93.

    Article  Google Scholar 

  22. Minois N. Resistance to stress as a function of age in transgenic Drosophila melanogaster overexpressing hsp70. J Insect Physiol 2001;47:1007–12.

    Article  CAS  PubMed  Google Scholar 

  23. Le Bourg E. Positive effects of exposure to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology 2007;8:431–44.

    Article  PubMed  Google Scholar 

  24. Lamb MJ. Radiation. In: Lints FA, Soliman MH, eds. Drosophila as a model organism for ageing studies. Glasgow: Blackie, 1988:71–84.

    Google Scholar 

  25. Sacher GA. Effects of X-rays on the survival of Drosophila imagoes. Physiol Zool 1963;36:295–311.

    Google Scholar 

  26. Orr WC, Sohal RS. Does overexpression of Cu/Zn-SOD extend life span in Drosophila melanogaster? Exp Gerontol 2003;38:227–30.

    Article  CAS  PubMed  Google Scholar 

  27. Miquel J, Lundgren PR, Binnard R. Negative geotaxis and mating behavior in control and gamma-irradiated Drosophila. Drosophila Information Service 1972;48:60–1.

    Google Scholar 

  28. Lamb MJ, McDonald RP. Heat tolerance changes with age in normal and irradiated Drosophila melanogaster. Exp Gerontol 1973;8:207–17.

    Article  CAS  PubMed  Google Scholar 

  29. Ren C, Webster P, Finkel SE, Tower J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 2007;6:144–52.

    Article  CAS  PubMed  Google Scholar 

  30. Le Bourg E. Hormetic effects on longevity of hydrogen peroxide in Drosophila melanogaster flies living on a poorly nutritious medium. Biogerontology 2007;8:327–44.

    Article  CAS  PubMed  Google Scholar 

  31. Moskalev A. Radiation-induced life span alteration of Drosophila lines with genotype differences. Biogerontology 2007;8:499–504.

    Article  PubMed  Google Scholar 

  32. Vaiserman AM, Koshel NM, Litoshenko AY, Mozzukhina TG, Voitenko VP. Effects of X-irradiation in early ontogenesis on the longevity and amount of the S1 nuclease sensitive DNA sites in adult Drosophila melanogaster. Biogerontology 2003;4:9–14.

    Article  CAS  PubMed  Google Scholar 

  33. Vaiserman AM, Koshel NM, Mechova LV, Voitenko VP. Cross-life stage and cross-generational effects of gamma-irradiations on the egg stage of Drosophila melanogaster life histories. Biogerontology 2004;5:327–37.

    Article  PubMed  Google Scholar 

  34. Vaiserman AM, Koshel NM, Voitenko VP. Effect of X-irradiation at larval stage on adult lifespan in Drosophila melanogaster. Biogerontology 2004;5:49–54.

    Article  PubMed  Google Scholar 

  35. Le Bourg E, Badia J. Decline in photopositive tendencies with age in Drosophila melanogaster (Diptera: Drosophilidae). J Insect Behav 1995;8:835–45.

    Article  Google Scholar 

  36. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.

    CAS  PubMed  Google Scholar 

  37. Le Bourg E, Fournier D. Is lifespan extension accompanied by improved antioxidant defences? A study of superoxide dismutase and catalase in Drosophila melanogaster flies that lived in hypergravity at young age. Biogerontology 2004;5:261–6.

    Article  CAS  PubMed  Google Scholar 

  38. Morrow G, Tanguay RM. Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 2003;14:291–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kristensen TN, Sørensen JG, Loeschcke V. Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Genet 2003;82:89–94.

    Article  CAS  PubMed  Google Scholar 

  40. Le Bourg E, Rattan SIS, eds. Mild stress and healthy aging: Applying hormesis in aging research and interventions. Berlin: Springer, 2008.

    Google Scholar 

  41. Le Bourg E. Hypergravity in Drosophila melanogaster. In: Le Bourg E, Rattan SIS, eds. Mild stress and healthy aging: Applying hormesis in aging research and interventions. Berlin: Springer, 2008:43–63.

    Google Scholar 

  42. Le Bourg E, Minois N. Does dietary restriction really increase longevity in Drosophila melanogaster? Ageing Res Rev 2005;4:409–21.

    Article  PubMed  Google Scholar 

  43. Mockett RJ, Cooper TM, Orr WC, Sohal RS. Effects of caloric restriction are species-specific. Biogerontology 2006;7:157–60.

    Article  PubMed  Google Scholar 

  44. Vigne P, Frelin C. Diet dependent longevity and hypoxic tolerance of adult Drosophila melanogaster. Mech Ageing Dev 2007;401–6.

    Google Scholar 

  45. Massie HR. Chemicals. In: Lints FA, Soliman MH, eds. Drosophila as a model organism for ageing studies. Glasgow: Blackie, 1988:59–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Le Bourg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bourg, É.L. (2009). Mild Stress and Life Extension in Drosophila melanogaster . In: Sell, C., Lorenzini, A., Brown-Borg, H. (eds) Life-Span Extension. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-507-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-507-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-506-4

  • Online ISBN: 978-1-60327-507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics