Skip to main content

Imaging for the Differential Diagnosis of Cushing’s Syndrome: MRI, CT, and Isotopic Scanning

  • Chapter
  • First Online:
Cushing's Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 2079 Accesses

Summary

In this chapter, the current available radiological (and scintigraphic) techniques used for intra-pituitary tumor localization in the ACTH-dependent CS will be discussed. In general this involves dedicated MRI protocols and sometimes sampling procedures are required. Adrenal imaging in CS can involve CT, MRI and scintigraphic procedures. Several radiological techniques such as CT, MRI, and sampling procedures, but also scintigraphic procedures are useful for localizing the extra-pituitary source of ACTH overproduction in the ectopic ACTH syndrome. Still the (occult) ACTH-producing tumor may sometimes not be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003;88(12):5593–5602.

    Article  CAS  PubMed  Google Scholar 

  2. Kaye TB, Crapo L. The Cushing syndrome: an update on diagnostic tests. Ann Intern Med 1990;112(6):434–444.

    CAS  PubMed  Google Scholar 

  3. Bonneville JF, Bonneville F, Barrali E, Jacquet G, Cattin F. Magnetic resonance imaging of the pituitary area: pathologic aspects. In: de Herder WW, editor. Functional and morphological imaging of the endocrine system. Boston: Kluwer Academic Publishers, 2000: 3–34.

    Chapter  Google Scholar 

  4. Boscaro M, Barzon L, Fallo F, Sonino N. Cushing’s syndrome. Lancet 2001;357(9258):783–791.

    Article  CAS  PubMed  Google Scholar 

  5. Dwyer AJ, Frank JA, Doppman JL, Oldfield EH, Hickey AM, Cutler GB, et al. Pituitary adenomas in patients with Cushing disease: initial experience with Gd-DTPA-enhanced MR imaging. Radiology 1987;163(2):421–426.

    CAS  PubMed  Google Scholar 

  6. Doppman JL, Frank JA, Dwyer AJ, Oldfield EH, Miller DL, Nieman LK, et al. Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland. J Comput Assist Tomogr 1988;12(5):728–735.

    Article  CAS  PubMed  Google Scholar 

  7. Lienhardt A, Grossman AB, Dacie JE, Evanson J, Huebner A, Afshar F, et al. Relative contributions of inferior petrosal sinus sampling and pituitary imaging in the investigation of children and adolescents with ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2001;86(12):5711–5714.

    Article  CAS  PubMed  Google Scholar 

  8. Tabarin A, Laurent F, Catargi B, Olivier-Puel F, Lescene R, Berge J, et al. Comparative evaluation of conventional and dynamic magnetic resonance imaging of the pituitary gland for the diagnosis of Cushing’s disease. Clin Endocrinol (Oxf) 1998;49(3):293–300.

    Article  CAS  Google Scholar 

  9. Patronas N, Bulakbasi N, Stratakis CA, Lafferty A, Oldfield EH, Doppman J, et al. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metab 2003;88(4):1565–1569.

    Article  CAS  PubMed  Google Scholar 

  10. Colombo N, Loli P, Vignati F, Scialfa G. MR of corticotropin-secreting pituitary microadenomas. AJNR Am J Neuroradiol 1994;15(8):1591–1595.

    CAS  PubMed  Google Scholar 

  11. de Herder WW, Uitterlinden P, Pieterman H, Tanghe HL, Kwekkeboom DJ, Pols HA, et al. Pituitary tumour localization in patients with Cushing’s disease by magnetic resonance imaging. Is there a place for petrosal sinus sampling? Clin Endocrinol (Oxf) 1994;40(1):87–92.

    Article  CAS  Google Scholar 

  12. Elster AD. Imaging of the sella: anatomy and pathology. Semin Ultrasound CT MR 1993;14(3):182–194.

    Article  CAS  PubMed  Google Scholar 

  13. Elster AD. Modern imaging of the pituitary. Radiology 1993;187(1):1–14.

    CAS  PubMed  Google Scholar 

  14. Elster AD. Sellar susceptibility artifacts: theory and implications. AJNR Am J Neuroradiol 1993;14(1):129–136.

    CAS  PubMed  Google Scholar 

  15. Hall WA, Luciano MG, Doppman JL, Patronas NJ, Oldfield EH. Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 1994;120(10):817–820.

    CAS  PubMed  Google Scholar 

  16. Arnaldi G, Mancini T, Kola B, Appolloni G, Freddi S, Concettoni C, et al. Cyclical Cushing’s syndrome in a patient with a bronchial neuroendocrine tumor (typical carcinoid) expressing ghrelin and growth hormone secretagogue receptors. J Clin Endocrinol Metab 2003;88(12):5834–5840.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman TC, Zuckerbraun E, Lee ML, Kabil MS, Shahinian H. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing’s syndrome and should be part of the initial workup. Horm Metab Res 2007;39(6):451–456.

    Article  CAS  PubMed  Google Scholar 

  18. Stadnik T, Stevenaert A, Beckers A, Luypaert R, Buisseret T, Osteaux M. Pituitary microadenomas: diagnosis with two-and three-dimensional MR imaging at 1.5 T before and after injection of gadolinium. Radiology 1990;176(2):419–428.

    CAS  PubMed  Google Scholar 

  19. de Herder WW, Kwekkeboom DJ, Reijs AEM, Kooy PPM, Hofland LJ, Krenning EP, et al. Receptor scintigraphy with somatostatin analogues and dopamine antagonists of pituitary tumours. In: Von Werder K, Fahlbusch R, editors. Pituitary adenomas. From basic research to diagnosis and therapy. Amsterdam: Elsevier Science BV, 1996: 93–104.

    Google Scholar 

  20. de Herder WW, Lamberts SW. Somatostatin analogs as radiodiagnostic tools. Rev Endocr Metab Disord 2005;6(1):23–27.

    Article  PubMed  Google Scholar 

  21. de Herder WW, Ferone D, Kwekkeboom DJ, Lamberts SWJ. Scintigraphy of pituitary tumors. In: de Herder WW, editor. Functional and morphological imaging of the endocrine system. Boston: Kluwer Academic Publishers, 2000: 47–58.

    Chapter  Google Scholar 

  22. de Bruin C, Feelders RA, Waaijers AM, van Koetsveld PM, Sprij-Mooij DM, Lamberts SW, et al. Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J Mol Endocrinol 2009;42(1):47–56.

    CAS  PubMed  Google Scholar 

  23. de Bruin C, Pereira AM, Feelders RA, Romijn JA, Roelfsema F, Sprij-Mooij DM, et al. Co-expression of dopamine and somatostatin receptor subtypes in corticotroph adenomas. J Clin Endocrinol Metab 2009;94(4):1118–24.

    Google Scholar 

  24. Vincent JM, Morrison ID, Armstrong P, Reznek RH. The size of normal adrenal glands on computed tomography. Clin Radiol 1994;49(7):453–455.

    Article  CAS  PubMed  Google Scholar 

  25. Perry RR, Nieman LK, Cutler GB, Jr., Chrousos GP, Loriaux DL, Doppman JL, et al. Primary adrenal causes of Cushing’s syndrome. Diagnosis and surgical management. Ann Surg 1989;210(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  26. NIH state-of-the-science statement on management of the clinically inapparent adrenal mass (“incidentaloma”). NIH Consens State Sci Statements 2002;19(2):1–25.

    Google Scholar 

  27. Fajardo R, Montalvo J, Velazquez D, Arch J, Bezaury P, Gamino R, et al. Correlation between radiologic and pathologic dimensions of adrenal masses. World J Surg 2004;28(5):494–497.

    Article  PubMed  Google Scholar 

  28. Mansmann G, Lau J, Balk E, Rothberg M, Miyachi Y, Bornstein SR. The clinically inapparent adrenal mass: update in diagnosis and management. Endocr Rev 2004;25(2):309–340.

    Article  PubMed  Google Scholar 

  29. Thompson GB, Young WF, Jr. Adrenal incidentaloma. Curr Opin Oncol 2003;15(1):84–90.

    Article  PubMed  Google Scholar 

  30. Korobkin M, Francis IR. Imaging of adrenal masses. Urol Clin North Am 1997;24(3):603–622.

    Article  CAS  PubMed  Google Scholar 

  31. Korobkin M. CT characterization of adrenal masses: the time has come. Radiology 2000;217(3):629–632.

    CAS  PubMed  Google Scholar 

  32. Hamrahian AH, Ioachimescu AG, Remer EM, Motta-Ramirez G, Bogabathina H, Levin HS, et al. Clinical utility of noncontrast computed tomography attenuation value (hounsfield units) to differentiate adrenal adenomas/hyperplasias from nonadenomas: Cleveland Clinic experience. J Clin Endocrinol Metab 2005;90(2):871–877.

    CAS  PubMed  Google Scholar 

  33. Korobkin M, Giordano TJ, Brodeur FJ, Francis IR, Siegelman ES, Quint LE, et al. Adrenal adenomas: relationship between histologic lipid and CT and MR findings. Radiology 1996;200(3):743–747.

    CAS  PubMed  Google Scholar 

  34. van Dijk LC, Krestin GP. Imaging of the adrenal glands. In: de Herder WW, editor. Functional and morphological imaging of the endocrine system. Boston: Kluwer Academic Publishers, 2000: 145–162.

    Chapter  Google Scholar 

  35. Korobkin M, Brodeur FJ, Yutzy GG, Francis IR, Quint LE, Dunnick NR, et al. Differentiation of adrenal adenomas from nonadenomas using CT attenuation values. AJR Am J Roentgenol 1996;166(3):531–536.

    CAS  PubMed  Google Scholar 

  36. Caoili EM, Korobkin M, Francis IR, Cohan RH, Dunnick NR. Delayed enhanced CT of lipid-poor adrenal adenomas. AJR Am J Roentgenol 2000;175(5):1411–1415.

    CAS  PubMed  Google Scholar 

  37. Lockhart ME, Smith JK, Kenney PJ. Imaging of adrenal masses. Eur J Radiol 2002;41(2):95–112.

    Article  PubMed  Google Scholar 

  38. Mantero F, Terzolo M, Arnaldi G, Osella G, Masini AM, Ali A, et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 2000;85(2):637–644.

    Article  CAS  PubMed  Google Scholar 

  39. Rockall AG, Babar SA, Sohaib SA, Isidori AM, Diaz-Cano S, Monson JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent cushing syndrome. Radiographics 2004;24(2):435–452.

    Article  PubMed  Google Scholar 

  40. Dunnick NR, Korobkin M, Francis I. Adrenal radiology: distinguishing benign from malignant adrenal masses. AJR Am J Roentgenol 1996;167(4):861–867.

    CAS  PubMed  Google Scholar 

  41. Lee MJ, Hahn PF, Papanicolaou N, Egglin TK, Saini S, Mueller PR, et al. Benign and malignant adrenal masses: CT distinction with attenuation coefficients, size, and observer analysis. Radiology 1991;179(2):415–418.

    CAS  PubMed  Google Scholar 

  42. Ilias I, Sahdev A, Reznek RH, Grossman AB, Pacak K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer 2007;14(3):587–599.

    Article  PubMed  Google Scholar 

  43. Dunnick NR, Korobkin M. Imaging of adrenal incidentalomas: current status. AJR Am J Roentgenol 2002;179(3):559–568.

    PubMed  Google Scholar 

  44. Boland GW, Hahn PF, Pena C, Mueller PR. Adrenal masses: characterization with delayed contrast-enhanced CT. Radiology 1997;202(3):693–696.

    CAS  PubMed  Google Scholar 

  45. Boland GW, Lee MJ, Gazelle GS, Halpern EF, McNicholas MM, Mueller PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 1998;171(1):201–204.

    CAS  PubMed  Google Scholar 

  46. Caoili EM, Korobkin M, Francis IR, Cohan RH, Platt JF, Dunnick NR, et al. Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology 2002;222(3):629–633.

    Article  PubMed  Google Scholar 

  47. Outwater EK, Siegelman ES, Huang AB, Birnbaum BA. Adrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequences. Radiology 1996;200(3):749–752.

    CAS  PubMed  Google Scholar 

  48. Dunnick NR. CT and MRI of adrenal lesions. Urol Radiol 1988;10(1):12–16.

    Article  CAS  PubMed  Google Scholar 

  49. Szolar DH, Schmidt-Kloiber C, Preidler KW. Computed tomography evaluation of adrenal masses. Curr Opin Urol 1999;9(2):143–151.

    Article  CAS  PubMed  Google Scholar 

  50. Szolar DH, Korobkin M, Reittner P, Berghold A, Bauernhofer T, Trummer H, et al. Adrenocortical carcinomas and adrenal pheochromocytomas: mass and enhancement loss evaluation at delayed contrast-enhanced CT. Radiology 2005;234(2):479–485.

    Article  PubMed  Google Scholar 

  51. Mayo-Smith WW, Boland GW, Noto RB, Lee MJ. State-of-the-art adrenal imaging. Radiographics 2001;21(4):995–1012.

    CAS  PubMed  Google Scholar 

  52. Korobkin M, Brodeur FJ, Francis IR, Quint LE, Dunnick NR, Londy F. CT time-attenuation washout curves of adrenal adenomas and nonadenomas. AJR Am J Roentgenol 1998;170(3):747–752.

    CAS  PubMed  Google Scholar 

  53. Slattery JM, Blake MA, Kalra MK, Misdraji J, Sweeney AT, Copeland PM, et al. Adrenocortical carcinoma: contrast washout characteristics on CT. AJR Am J Roentgenol 2006;187(1):W21–W24.

    Article  PubMed  Google Scholar 

  54. Doppman JL, Travis WD, Nieman L, Miller DL, Chrousos GP, Gomez MT, et al. Cushing syndrome due to primary pigmented nodular adrenocortical disease: findings at CT and MR imaging. Radiology 1989;172(2):415–420.

    CAS  PubMed  Google Scholar 

  55. Sohaib SA, Hanson JA, Newell-Price JD, Trainer PJ, Monson JP, Grossman AB, et al. CT appearance of the adrenal glands in adrenocorticotrophic hormone-dependent Cushing’s syndrome. AJR Am J Roentgenol 1999;172(4):997–1002.

    CAS  PubMed  Google Scholar 

  56. Mayo-Smith WW, Lee MJ, McNicholas MM, Hahn PF, Boland GW, Saini S. Characterization of adrenal masses (< 5 cm) by use of chemical shift MR imaging: observer performance versus quantitative measures. AJR Am J Roentgenol 1995;165(1):91–95.

    CAS  PubMed  Google Scholar 

  57. Bilbey JH, McLoughlin RF, Kurkjian PS, Wilkins GE, Chan NH, Schmidt N, et al. MR imaging of adrenal masses: value of chemical-shift imaging for distinguishing adenomas from other tumors. AJR Am J Roentgenol 1995;164(3):637–642.

    CAS  PubMed  Google Scholar 

  58. Korobkin M, Lombardi TJ, Aisen AM, Francis IR, Quint LE, Dunnick NR, et al. Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology 1995;197(2):411–418.

    CAS  PubMed  Google Scholar 

  59. Tsushima Y, Ishizaka H, Matsumoto M. Adrenal masses: differentiation with chemical shift, fast low-angle shot MR imaging. Radiology 1993;186(3):705–709.

    CAS  PubMed  Google Scholar 

  60. Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM. Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology 1992;185(2):345–351.

    CAS  PubMed  Google Scholar 

  61. Reinig JW, Stutley JE, Leonhardt CM, Spicer KM, Margolis M, Caldwell CB. Differentiation of adrenal masses with MR imaging: comparison of techniques. Radiology 1994;192(1):41–46.

    CAS  PubMed  Google Scholar 

  62. Ichikawa T, Ohtomo K, Uchiyama G, Fujimoto H, Nasu K. Contrast-enhanced dynamic MRI of adrenal masses: classification of characteristic enhancement patterns. Clin Radiol 1995;50(5):295–300.

    Article  CAS  PubMed  Google Scholar 

  63. Lee MJ, Mayo-Smith WW, Hahn PF, Goldberg MA, Boland GW, Saini S, et al. State-of-the-art MR imaging of the adrenal gland. Radiographics 1994;14(5):1015–1029.

    CAS  PubMed  Google Scholar 

  64. Semelka RC, Shoenut JP, Lawrence PH, Greenberg HM, Maycher B, Madden TP, et al. Evaluation of adrenal masses with gadolinium enhancement and fat-suppressed MR imaging. J Magn Reson Imaging 1993;3(2):337–343.

    Article  CAS  PubMed  Google Scholar 

  65. Lumachi F, Zucchetta P, Marzola MC, Bui F, Casarrubea G, Angelini F, et al. Usefulness of CT scan, MRI and radiocholesterol scintigraphy for adrenal imaging in Cushing’s syndrome. Nucl Med Commun 2002;23(5):469–473.

    Article  CAS  PubMed  Google Scholar 

  66. Chezmar JL, Robbins SM, Nelson RC, Steinberg HV, Torres WE, Bernardino ME. Adrenal masses: characterization with T1-weighted MR imaging. Radiology 1988;166(2):357–359.

    CAS  PubMed  Google Scholar 

  67. Heinz-Peer G, Honigschnabl S, Schneider B, Niederle B, Kaserer K, Lechner G. Characterization of adrenal masses using MR imaging with histopathologic correlation. AJR Am J Roentgenol 1999;173(1):15–22.

    CAS  PubMed  Google Scholar 

  68. Imperiale A, Olianti C, Mannelli M, La Cava G, Pupi A. Tomographic evaluation of [131I] 6beta-iodomethyl-norcholesterol standardised uptake trend in clinically silent monolateral and bilateral adrenocortical incidentalomas.Q J Nucl Med Mol Imaging 2005;49(3):287–296.

    CAS  PubMed  Google Scholar 

  69. Gross MD, Shapiro B, Shreve P, Shulkin BI. Scintigraphy of adrenal disorders. In: de Herder WW, editor. Functional and morphological imaging of the endocrine system. Boston: Kluwer Academic Publishers, 2000: 163–190.

    Chapter  Google Scholar 

  70. Zettinig G, Mitterhauser M, Wadsak W, Becherer A, Pirich C, Vierhapper H, et al. Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11beta-hydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging 2004;31(9):1224–1230.

    PubMed  Google Scholar 

  71. Eriksson B, Orlefors H, Oberg K, Sundin A, Bergstrom M, Langstrom B. Developments in PET for the detection of endocrine tumours. Best Pract Res Clin Endocrinol Metab 2005;19(2):311–324.

    Article  CAS  PubMed  Google Scholar 

  72. Gross MD, Avram A, Fig LM, Fanti S, Al Nahhas A, Rubello D. PET in the diagnostic evaluation of adrenal tumors. Q J Nucl Med Mol Imaging 2007;51(3):272–283.

    CAS  PubMed  Google Scholar 

  73. Hennings J, Lindhe O, Bergstrom M, Langstrom B, Sundin A, Hellman P. [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J Clin Endocrinol Metab 2006;91(4):1410–1414.

    Article  CAS  PubMed  Google Scholar 

  74. Mitterhauser M, Dobrozemsky G, Zettinig G, Wadsak W, Vierhapper H, Dudczak R, et al. Imaging of adrenocortical metastases with [11C]metomidate. Eur J Nucl Med Mol Imaging 2006;33(8):974.

    Article  PubMed  Google Scholar 

  75. Blake MA, Slattery JM, Kalra MK, Halpern EF, Fischman AJ, Mueller PR, et al. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy-initial experience. Radiology 2006;238(3):970–977.

    Article  PubMed  Google Scholar 

  76. Tenenbaum F, Groussin L, Foehrenbach H, Tissier F, Gouya H, Bertherat J, et al. 18F-fluorodeoxyglucose positron emission tomography as a diagnostic tool for malignancy of adrenocortical tumours? Preliminary results in 13 consecutive patients. Eur J Endocrinol 2004;150(6):789–792.

    Article  CAS  PubMed  Google Scholar 

  77. Mackie GC, Shulkin BL, Ribeiro RC, Worden FP, Gauger PG, Mody RJ, et al. Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab 2006;91(7):2665–2671.

    Article  CAS  PubMed  Google Scholar 

  78. Leboulleux S, Dromain C, Bonniaud G, Auperin A, Caillou B, Lumbroso J, et al. Diagnostic and prognostic value of 18-fluorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J Clin Endocrinol Metab 2006;91(3):920–925.

    CAS  PubMed  Google Scholar 

  79. Maurea S, Mainolfi C, Bazzicalupo L, Panico MR, Imparato C, Alfano B, et al. Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions. AJR Am J Roentgenol 1999;173(1):25–29.

    CAS  PubMed  Google Scholar 

  80. Isidori AM, Kaltsas GA, Grossman AB. Ectopic ACTH syndrome. Front Horm Res 2006;35:143–156.

    Article  CAS  PubMed  Google Scholar 

  81. Isidori AM, Kaltsas GA, Pozza C, Frajese V, Newell-Price J, Reznek RH, et al. The ectopic ACTH syndrome: Clinical features, diagnosis, management and long-term follow-up. J Clin Endocrinol Metab 2006;91(2):371–7.

    Google Scholar 

  82. Beuschlein F, Hammer GD. Ectopic pro-opiomelanocortin syndrome. Endocrinol Metab Clin North Am 2002;31(1):191–234.

    Article  CAS  PubMed  Google Scholar 

  83. Wajchenberg BL, Mendonca BB, Liberman B, Pereira MA, Carneiro PC, Wakamatsu A, et al. Ectopic adrenocorticotropic hormone syndrome. Endocr Rev 1994;15(6):752–787.

    CAS  PubMed  Google Scholar 

  84. Doppman JL, Nieman L, Miller DL, Pass HI, Chang R, Cutler GB, Jret al.., Ectopic adrenocorticotropic hormone syndrome: localization studies in 28 patients. Radiology 1989;172(1):115–124.

    CAS  PubMed  Google Scholar 

  85. de Herder WW, Krenning EP, Malchoff CD, Hofland LJ, Reubi JC, Kwekkeboom DJ, et al. Somatostatin receptor scintigraphy: its value in tumor localization in patients with Cushing’s syndrome caused by ectopic corticotropin or corticotropin-releasing hormone secretion. Am J Med 1994;96(4):305–312.

    Article  CAS  PubMed  Google Scholar 

  86. Weiss M, Yellin A, Husza’r M, Eisenstein Z, Bar-Ziv J, Krausz Y. Localization of adrenocorticotropic hormone-secreting bronchial carcinoid tumor by somatostatin-receptor scintigraphy. Ann Intern Med 1994;121(3):198–199.

    CAS  PubMed  Google Scholar 

  87. Phlipponneau M, Nocaudie M, Epelbaum J, de Keyzer Y, Lalau JD, Marchandise X et al. Somatostatin analogs for the localization and preoperative treatment of an adrenocorticotropin-secreting bronchial carcinoid tumor. J Clin Endocrinol Metab 1994;78(1):20–24.

    Article  CAS  PubMed  Google Scholar 

  88. Lefebvre H, Jegou S, Leroux P, Dero M, Vaudry H, Kuhn JM. Characterization of the somatostatin receptor subtype in a bronchial carcinoid tumor responsible for Cushing’s syndrome. J Clin Endocrinol Metab 1995;80(4):1423–1428.

    Article  CAS  PubMed  Google Scholar 

  89. Matte J, Roufosse F, Rocmans P, Schoutens A, Jacobovitz D, Mockel J. Ectopic Cushing’s syndrome and pulmonary carcinoid tumour identified by [111In-DTPA-D-Phe1]octreotide. Postgrad Med J 1998;74(868):108–110.

    Article  CAS  PubMed  Google Scholar 

  90. Tremble JM, Buxton-Thomas M, Hopkins D, Kane P, Bailey D, Harris PE. Cushing’s syndrome associated with a chemodectoma and a carcinoid tumour. Clin Endocrinol (Oxf) 2000;52(6):789–793.

    Article  CAS  Google Scholar 

  91. Bakalakos EA, Cawley K, O’Dorisio TM, Heck C, Schirmer WJ. Localization of ectopic corticotropin-producing carcinoid tumor with use of indium-111 pentetreotide scintigraphy. Endocr Pract 1998;4(6):378–381.

    CAS  PubMed  Google Scholar 

  92. Tsagarakis S, Christoforaki M, Giannopoulou H, Rondogianni F, Housianakou I, Malagari C, et al. A reappraisal of the utility of somatostatin receptor scintigraphy in patients with ectopic adrenocorticotropin Cushing’s syndrome. J Clin Endocrinol Metab 2003;88(10):4754–4758.

    Article  CAS  PubMed  Google Scholar 

  93. Tabarin A, Valli N, Chanson P, Bachelot Y, Rohmer V, Bex-Bachellerie V, et al. Usefulness of somatostatin receptor scintigraphy in patients with occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 1999;84(4):1193–1202.

    Article  CAS  PubMed  Google Scholar 

  94. de Herder WW, Lamberts SW. Octapeptide somatostatin-analogue therapy of Cushing’s syndrome. Postgrad Med J 1999;75(880):65–66.

    CAS  PubMed  Google Scholar 

  95. Pacak K, Ilias I, Chen CC, Carrasquillo JA, Whatley M, Nieman LK. The role of [(18)F]fluorodeoxyglucose positron emission tomography and [(111)In]-diethylenetriaminepentaacetate-D-Phe-pentetreotide scintigraphy in the localization of ectopic adrenocorticotropin-secreting tumors causing Cushing’s syndrome. J Clin Endocrinol Metab 2004;89(5):2214–2221.

    Article  CAS  PubMed  Google Scholar 

  96. de Herder WW, Lamberts SW. Is there a role for somatostatin and its analogs in Cushing’s syndrome? Metabolism 1996;45(8 Suppl 1):83–85.

    Article  CAS  PubMed  Google Scholar 

  97. de Herder WW, Lamberts SW. Tumor localization-the ectopic ACTH syndrome. J Clin Endocrinol Metab 1999;84(4):1184–1185.

    Article  CAS  PubMed  Google Scholar 

  98. Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007;21(1):69–85.

    Article  CAS  PubMed  Google Scholar 

  99. Balon HR, Goldsmith SJ, Siegel BA, Silberstein EB, Krenning EP, Lang O, et al. Procedure guideline for somatostatin receptor scintigraphy with (111)In-pentetreotide. J Nucl Med 2001;42(7):1134–1138.

    CAS  PubMed  Google Scholar 

  100. Torpy DJ, Chen CC, Mullen N, Doppman JL, Carrasquillo JA, Chrousos GP, et al. Lack of utility of (111)In-pentetreotide scintigraphy in localizing ectopic ACTH producing tumors: follow-up of 18 patients [see comments]. J Clin Endocrinol Metab 1999;84(4):1186–1192.

    Article  CAS  PubMed  Google Scholar 

  101. Granberg D, Sundin A, Janson ET, Oberg K, Skogseid B, Westlin JE. Octreoscan in patients with bronchial carcinoid tumours. Clin Endocrinol (Oxf) 2003;59(6):793–799.

    Article  Google Scholar 

  102. Haug A, Auernhammer CJ, Wangler B, Tiling R, Schmidt G, Goke B, et al. Intraindividual comparison of (68)Ga-DOTA-TATE and (18)F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging, 2009;36(5):765–70.

    Google Scholar 

  103. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 2008;35(8):1431–1438.

    Article  CAS  PubMed  Google Scholar 

  104. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34(10):1617–1626.

    Article  CAS  PubMed  Google Scholar 

  105. Kumar J, Spring M, Carroll PV, Barrington SF, Powrie JK. 18Flurodeoxyglucose positron emission tomography in the localization of ectopic ACTH-secreting neuroendocrine tumours. Clin Endocrinol (Oxf) 2006;64(4):371–374.

    CAS  Google Scholar 

  106. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Langstrom B, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors - comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 2005;90:3392–3400.

    Article  CAS  PubMed  Google Scholar 

  107. Koopmans KP, de Vries EG, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 2006;7(9):728–734.

    Article  CAS  PubMed  Google Scholar 

  108. Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 2008;;26(9):1489–1495.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Herder, W.W., Feelders, R.A. (2010). Imaging for the Differential Diagnosis of Cushing’s Syndrome: MRI, CT, and Isotopic Scanning. In: Bronstein, M. (eds) Cushing's Syndrome. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-449-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-449-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-448-7

  • Online ISBN: 978-1-60327-449-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics