Skip to main content

Lentiviral Vector-Mediated Genetic Programming of Mouse and Human Dendritic Cells

  • Protocol
Genetic Modification of Hematopoietic Stem Cells

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 506))

Summary

Dendritic cells (DCs) play a key role in the orchestration of immune reactions. Manipulation of DC function through genetic manipulation for vaccine development provides a multitude of applications for active immunotherapy of cancer and chronic infections. Several laboratories have shown that lentiviral vectors (LVs) are efficient and consistent tools for ex vivo gene manipulation of DCs and their precursors. LVs integrate in the genome of target cells resulting in persistent and stable transgene expression, and gene delivery does not result in cytostatic or nonspecific adverse immunomodulatory reactions. Mouse, macaque, and human DCs are efficiently transduced with LVs, allowing preclinical vaccination studies to be gradually implemented into clinical trials. This chapter describes HIV-1-derived LV transduction used for ex vivo gene delivery of marking genes, antigens, and immunomodulatory molecules into mouse and human hematopoietic precursors and DCs. With the perspective of bioengineering DCs from the inside-out, we also describe a one-hit LV transduction method for constitutive expression of GM-CSF and IL-4 genes, which allows self-differentiation of mouse and human hematopoietic precursor cells into highly viable and potent DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banchereau, J., Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  2. O'Neill, D.W., Adams, S., Bhardwaj, N. (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104:2235–2246

    Article  PubMed  Google Scholar 

  3. Figdor, C.G., de Vries, I.J., Lesterhuis, W.J., Melief, C.J. (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  CAS  PubMed  Google Scholar 

  4. Van den Bosch, G.A., Ponsaerts, P., Vanham, G., Van Bockstaele, D.R., Berneman, Z.N., Van Tendeloo, V. F. (2006) Cellular immunotherapy for cytomegalovirus and HIV-1 infection. J Immunother 29:107–121

    Article  PubMed  Google Scholar 

  5. Sallusto, F., Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  CAS  PubMed  Google Scholar 

  6. Inaba, K., Steinman, R.M., Pack, M.W., Aya, H., Inaba, M., Sudo, T., Wolpe, S., Schuler, G. (1992) Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 175:1157–1167

    Article  CAS  PubMed  Google Scholar 

  7. Heidenreich, S. (1999) Monocyte CD14: a multifunctional receptor engaged in apoptosis from both sides. J Leukoc Biol 65:737–743

    CAS  PubMed  Google Scholar 

  8. Lutz, M.B., Suri, R.M., Niimi, M., Ogilvie, A.L., Kukutsch, N.A., Rossner, S., Schuler, G., Austyn, J.M. (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30:1813–22

    Article  CAS  PubMed  Google Scholar 

  9. Schuler, G., Steinman, R.M. (1997) Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186:1183–1187

    Article  CAS  PubMed  Google Scholar 

  10. Ribas, A., Butterfield, L.H., Glaspy, J.A., Economou, J.S. (2003) Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 21:2415–2432

    Article  CAS  PubMed  Google Scholar 

  11. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747–752

    Article  CAS  PubMed  Google Scholar 

  12. Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J.P., van Kooten, C., Liu, Y.J., Rousset, F., Saeland, S. (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12:881–922

    Article  CAS  PubMed  Google Scholar 

  13. Ribas, A., Butterfield, L.H., Amarnani, S.N., Dissette, V.B., Kim, D., Meng, W.S., Miranda, G.A., Wang, H.J., McBride, W.H., Glaspy, J.A., Economou, J.S. (2001) CD40 crosslinking bypasses the absolute requirement for CD4 T cells during immunization with melanoma antigen gene-modified dendritic cells. Cancer Res 61:8787–93

    CAS  PubMed  Google Scholar 

  14. Lau, R., Wang, F., Jeffery, G., Marty, V., Kuniyoshi, J., Bade, E., Ryback, M.E., Weber, J. (2001) Phase I trial of intravenous peptidepulsed dendritic cells in patients with metastatic melanoma. J Immunother 24:66–78

    Article  CAS  PubMed  Google Scholar 

  15. Dullaers, M., Thielemans, K. (2006) From pathogen to medicine: HIV-1-derived lentiviral vectors as vehicles for dendritic cell based cancer immunotherapy. J Gene Med 8:3–17

    Article  CAS  PubMed  Google Scholar 

  16. Van den Driessche, T., Thorrez, L., Naldini, L., Follenzi, A., Moons, L., Berneman, Z., Collen, D., Chuah, M.K. (2002) Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100:813–822

    Article  Google Scholar 

  17. Follenzi, A., Battaglia, M., Lombardo, A., Annoni, A., Roncarolo, M.G., Naldini, L. (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103:3700–3709

    Article  CAS  PubMed  Google Scholar 

  18. Schroers, R., Sinha, I., Segall, H., SchmidtWolf, I.G., Rooney, C.M., Brenner, M.K., Sutton, R.E., Chen, S.Y. (2000) Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 1:171–179

    Article  CAS  PubMed  Google Scholar 

  19. Gruber, A., Kan-Mitchell, J., Kuhen, K.L., Mukai, T., Wong-Staal, F. (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T- lymphocyte response in vitro. Blood 96:1327–1333

    CAS  PubMed  Google Scholar 

  20. Chinnasamy, N., Chinnasamy, D., Toso, J.F., Lapointe, R., Candotti, F., Morgan, R.A., Hwu, P. (2000) Ef ficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum Gene Ther 11:1901–1909

    Article  CAS  PubMed  Google Scholar 

  21. Granelli-Piperno, A., Zhong, L., Haslett, P., Jacobson, J., Steinman, R.M. (2000) Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1-infected individuals. J Immunol 165:6620–6626

    CAS  PubMed  Google Scholar 

  22. Dyall, J., Latouche, J.B., Schnell, S., Sadelain, M. (2001) Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 97:114–121

    Article  CAS  PubMed  Google Scholar 

  23. Salmon, P., Arrighi, J.F., Piguet, V., Chapuis, B., Zubler, R.H., Trono, D., Kindler, V. (2001) Transduction of CD34+ cells with lentiviral vectors enables the production of large quantities of transgene-expressing immature and mature dendritic cells. J Gene Med 3:311–320

    Article  CAS  PubMed  Google Scholar 

  24. Esslinger, C., Romero, P., MacDonald, H.R. (2002) Efficient transduction of dendritic cells and induction of a T-cell response by thirdgeneration lentivectors. Hum Gene Ther 13:1091–1100

    Article  CAS  PubMed  Google Scholar 

  25. Rouas, R., Uch, R., Cleuter, Y., Jordier, F., Bagnis, C., Mannoni, P., Lewalle, P., Mar tiat, P., Van den Broeke, A. (2002) Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 9:715–724

    Article  CAS  PubMed  Google Scholar 

  26. Koya, R.C., Kasahara, N., Favaro, P.M., Lau, R., Ta, H.Q., Weber, J.S., Stripecke, R. (2003) Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 26:451–460

    Article  CAS  PubMed  Google Scholar 

  27. Veron, P., Boutin, S., Bernard, J., Danos, O., Davoust, J., Masurier, C. (2006) Efficient transduction of monocyte- and CD34+-derived Langerhans cells with lentiviral vectors in the absence of phenotypic and functional maturation. J Gene Med 8:951–961

    Article  CAS  PubMed  Google Scholar 

  28. Metharom, P., Ellem, K.A., Schmidt, C., Wei, M.Q. (2001) Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 12:2203–2213

    Article  CAS  PubMed  Google Scholar 

  29. Koya, R.C., Kimura, T., Ribas, A., Rozengurt, N., Lawson, G.W., Faure-Kumar, E., Wang, H.J., Herschman, H., Kasahara, N., Stripecke, R. (2007) Lentiviral vector-mediated autonomous differentiation of mouse bone marrow cells into immunologically potent dendritic cell vaccines. Mol Ther 15:971–980

    Article  CAS  PubMed  Google Scholar 

  30. Lizee, G., Gonzales, M.I., Topalian, S.L. (2004) Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther 15:393–404

    Article  CAS  PubMed  Google Scholar 

  31. Breckpot, K., Dullaers, M., Bonehill, A., van Meirvenne, S., Heirman, C., de Greef, C., van der Bruggen, P., Thielemans, K. (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667

    Article  CAS  PubMed  Google Scholar 

  32. Firat, H., Zennou, V., Garcia-Pons, F., Ginhoux, F., Cochet, M., Danos, O., Lemonnier, F.A., Langlade-Demoyen, P., Charneau, P. (2002) Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J Gene Med 4:38–45

    Article  PubMed  Google Scholar 

  33. Zarei, S., Abraham, S., Arrighi, J.F., Haller, O., Calzascia, T., Walker, P.R., Kundig, T.M., Hauser, C., Piguet, V. (2004) Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J Virol 78:7843–7845

    Article  CAS  PubMed  Google Scholar 

  34. Chen, X., Wang, B., Chang, L.J. (2006) Induction of primary anti-HIV CD4 and CD8 T cell responses by dendritic cells transduced with self-inactivating lentiviral vectors. Cell Immunol 243:10–18

    Article  CAS  PubMed  Google Scholar 

  35. Buffa, V., Negri, D.R., Leone, P., Borghi, M., Bona, R., Michelini, Z., Compagnoni, D., Sgadari, C., Ensoli, B., Cara, A. (2006) Evaluation of a self-inactivating lentiviral vector expressing simian immunodeficiency virus gag for induction of specific immune responses in vitro and in vivo. Viral Immunol 19:690–701

    Article  CAS  PubMed  Google Scholar 

  36. Koya, R.C., Weber, J.S., Kasahara, N., Lau, R., Villacres, M.C., Levine, A.M., Stripecke, R. (2004) Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum Gene Ther 15:733–748

    Article  CAS  PubMed  Google Scholar 

  37. Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  Google Scholar 

  38. Stripecke, R., Koya, R.C., Ta, H.Q., Kasahara, N., Levine, A.M. (2003) The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells Mol Dis 31:28–37

    Article  CAS  PubMed  Google Scholar 

  39. Breckpot, K., Corthals, J., Heirman, C., Bonehill, A., Michiels, A., Tuyaerts, S., De Greef, C., Thielemans, K. (2004) Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 15:562–573

    Article  CAS  PubMed  Google Scholar 

  40. Gorski, K.S., Shin, T., Crafton, E., Otsuji, M., Rattis, F.M., Huang, X., Kelleher, E., Francisco, L., Pardoll, D., Tsuchiya, H. (2003) A set of genes selectively expressed in murine dendritic cells: utility of related cis-acting sequences for lentiviral gene transfer. Mol Immunol 40:35–47

    Article  CAS  PubMed  Google Scholar 

  41. Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., Cheng, L. (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood. 99:399–408

    Article  CAS  PubMed  Google Scholar 

  42. Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M., Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  CAS  PubMed  Google Scholar 

  43. Sirven, A., Pflumio, F., Zennou, V., Titeux, M., Vainchenker, W., Coulombel, L., Dubart-Kupperschmitt, A., Charneau, P. (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96:4103–4110

    CAS  PubMed  Google Scholar 

  44. Mangeot, P.E., Duperrier, K., Negre, D., Boson, B., Rigal, D., Cosset, F.L., Darlix, J.L. (2002) High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 5:283–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the previous and current members of her group and of the UCLA Vector Core for the hard work and support. This work was supported by The Margareth E. Early Research Trust, Stop Cancer, and NIH grants (UCLA Center for in vivo Imaging in Cancer Biology/2P50-CA086306-06, Rebirth/DFG and SFB 738/DFG.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stripecke, R. (2009). Lentiviral Vector-Mediated Genetic Programming of Mouse and Human Dendritic Cells. In: Baum, C. (eds) Genetic Modification of Hematopoietic Stem Cells. Methods In Molecular Biology™, vol 506. Humana Press. https://doi.org/10.1007/978-1-59745-409-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-409-4_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-980-2

  • Online ISBN: 978-1-59745-409-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics