Skip to main content

Biomechanics - Part II

  • Chapter
  • First Online:
Bone Pathology

Abstract

Bone is a self-repairing structural material, which adapts its material properties and shape in response to a number of factors. Healthy bones do not develop spontaneous fractures during voluntary physical activities of life. However, an imbalance between bone strength and the mechanical loads placed on the bones can lead to bone fractures. Bone health is affected by a number of factors including age, gender, physical activity, systemic diseases, and drug treatment for various diseases. This chapter will discuss bone design as it relates to fracture resistance and locomotion, fracture prediction techniques, and fracture prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frost HM. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anatomical Record 2001;262(4):398–419.

    Article  PubMed  CAS  Google Scholar 

  2. Melton 3rd LJ. Who has osteoporosis? A conflict between clinical and public health perspectives. 2000:2309–14.

    Google Scholar 

  3. Heaney RP. 2003;Is the paradigm shifting? Bone 33(4):457–65.

    Article  PubMed  Google Scholar 

  4. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 1996;19(5):479–84.

    Article  PubMed  CAS  Google Scholar 

  5. Gage BF, Birman-Deych E, Radford MJ, Nilasena DS, Binder EF. Risk of osteoporotic fracture in elderly patients taking warfarin: Results from the National Registry of Atrial Fibrillation 2. Archives of Internal Medicine 2006;166(2):241–6.

    Article  PubMed  CAS  Google Scholar 

  6. Hubbard RB, Smith CJP, Smeeth L, Harrison TW, Tattersfield AE. 2002;Inhaled corticosteroids and hip fracture: A population-based case-control study. American Journal of Respiratory and Critical Care Medicine 166(12):1563–6.

    Article  PubMed  Google Scholar 

  7. Jee WSS. Integrated bone tissue physiology: Anatomy and physiology. In: Cowin SC, Ed. Bone Mechanics Handbook. Second ed. Florida: CRC Press; 2001:1–68.

    Google Scholar 

  8. Currey JD. The design of mineralised hard tissues for their mechanical functions. Journal of Experimental Biology 1999;202(23):3285–94.

    PubMed  CAS  Google Scholar 

  9. Seeman E. Periosteal bone formation – A neglected determinant of bone strength. New England Journal of Medicine 2003;349(4):320–3.

    Article  PubMed  Google Scholar 

  10. Wolff J. Über die Bedeutung der Architektur der spongiösen Substanz, Zentralblatt für die medizinische Wissenschaft, VI. Jahrgang. 1869:223–34.

    Google Scholar 

  11. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: A peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 2000;27(3):351–7.

    Article  PubMed  CAS  Google Scholar 

  12. Pauwels F. Biomechanics of the Locomotor Apparatus. (Translated from German by P. Maquet and R. Furlong). Berlin: Springer-Verlag; 1980.

    Chapter  Google Scholar 

  13. Jhamaria NL, Lal KB, Udawat M, Banerji P, Kabra SG. The trabecular pattern of the calcaneum as an index of osteoporosis. Journal of Bone and Joint Surgery-British Volume 1983;65(2):195–8.

    CAS  Google Scholar 

  14. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. Journal of Biomedical Materials Research 1999;45(2):108–16.

    Article  PubMed  CAS  Google Scholar 

  15. Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinology and Metabolism Clinics of North America 2003;32(1):25–38 (Review).

    Article  PubMed  CAS  Google Scholar 

  16. Chevalley T, Hoffmeyer P, Bonjour JP, Rizzoli R. An osteoporosis clinical pathway for the medical management of patients with low-trauma fracture. Osteoporosis International 2002;13(6):450–5.

    Article  PubMed  CAS  Google Scholar 

  17. Seeman E. The structural basis of bone fragility in men. Bone 1999;25(1):143–7.

    Article  PubMed  CAS  Google Scholar 

  18. Parfitt AM. Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 1992;13:S41–S47.

    Article  PubMed  Google Scholar 

  19. Seeman E. From density to structure: Growing up and growing old on the surfaces of bone. 1997:509–21.

    Google Scholar 

  20. Han ZH, Palnitkar S, Sudhaker DR, Nelson D, Parfitt AM. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: Implications for mechanisms of bone loss. 1997:498–508.

    Google Scholar 

  21. Faulkner KG. Bone matters: Are density increases necessary to reduce fracture risk? 2000:183–7.

    Google Scholar 

  22. Aerssens J, Boonen S, Joly J, Dequeker J. Variations in trabecular bone composition with anatomical site and age: Potential implications for bone quality assessment. Journal of Endocrinology 1997;155(3):411–21.

    Article  PubMed  CAS  Google Scholar 

  23. Frost HM. Coming changes in accepted wisdom about “osteoporosis”. Journal of Musculoskeletal and Neuronal Interactions 2004;4(1):78–85.

    PubMed  CAS  Google Scholar 

  24. Augat P, Gordon CL, Lang TF, Iida H, Genant HK. Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Physics in Medicine and Biology 1998;43(10):2873–83.

    Article  PubMed  CAS  Google Scholar 

  25. Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporosis International 2004;15(11):847–54.

    Article  PubMed  Google Scholar 

  26. Karlsson M. Physical activity, skeletal health and fractures in a long term perspective. Journal of Musculoskeletal and Neuronal Interactions 2004;4(1):12–21.

    PubMed  CAS  Google Scholar 

  27. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: A summary of the literature and statistical synthesis. Journal of Bone and Mineral Research 2000;15(4):721–39.

    Article  PubMed  CAS  Google Scholar 

  28. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. Jama – Journal of the American Medical Association 2001;285(3):320–3.

    Article  CAS  Google Scholar 

  29. Boot AM, deRidder MAJ, Pols HAP, Krenning EP, KeizerSchrama S. Bone mineral density in children and adolescents: Relation to puberty, calcium intake, and physical activity. Journal of Clinical Endocrinology and Metabolism 1997;82(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  30. Beshgetoor D, Nichols J, Rego I. Effect of training mode and calcium intake on bone mineral density in female master cyclist, runners, and non-athletes. International Journal of Sport Nutrition and Exercise Metabolism 2000;10(3):290–301.

    PubMed  CAS  Google Scholar 

  31. Tinetti ME. Clinical practice: Preventing falls in elderly persons. 2003;348(1):1–2.

    Google Scholar 

  32. Yoganandan N, Pintar FA, Kumaresan S, Boynton M. Axial impact biomechanics of the human foot-ankle complex. Journal of Biomechanical Engineering-Transactions of the Asme 1997;119(4):433–7.

    Article  CAS  Google Scholar 

  33. Turner CH. On Wolff’s law of trabecular architecture. Journal of Biomechanics 1992;25(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  34. Whedon GD, L L, Rambaut PC, et al Mineral and nitrogen metabolic studies, experiment M071. In: Johnston RS, Dietlein LF, Eds. Biomedical Results from Skylab. Washington: NASA SP-377. NASA; 1977:164–74.

    Google Scholar 

  35. Schneider VB. Space medicine considerations: Skeletal and calcium homeostasis. In: Workshop on Exercise Prescription for Long-Duration Space Flight. 1989:47–52.

    Google Scholar 

  36. Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: An overview. In: Johnston RS, Dietlein LF, Eds. Biomedical Results from Skylab. Washington: NASA SP-377. NASA; 1977:204–20.

    Google Scholar 

  37. Rambaut PC, Goode AW. Skeletal changes during space-flight. Lancet 1985;2(8463):1050–2.

    Article  PubMed  CAS  Google Scholar 

  38. Whedon GD. Disuse osteoporosis – Physiological aspects. Calcified Tissue International 1984;36:S146–S150.

    Article  PubMed  Google Scholar 

  39. Tilton FE, Degioanni JJC, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviation, Space, and Environmental Medicine 1980;51(11):1209–13.

    PubMed  CAS  Google Scholar 

  40. Parfitt AM. The coupling of bone formation to bone resorption – A critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metabolic Bone Disease and Related Research 1982;4(1):1–6.

    Article  CAS  Google Scholar 

  41. Zernicke RF, Vailas AC, Salem GJ. Biomechanical response of bone to weightlessness. Exercise and Sport Sciences Reviews 1990;18:167–92.

    Article  PubMed  CAS  Google Scholar 

  42. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. The Journal of Bone and Joint Surgery 1977;59(7):954–62.

    PubMed  CAS  Google Scholar 

  43. Thomas T, Vico L, Skerry TM, et al. Architectural modifications and cellular response during disuse-related bone loss in calcaneus of the sheep. Journal of Applied Physiology 1996;80(1):198–202.

    PubMed  CAS  Google Scholar 

  44. Skerry TM, Lanyon LE. Interruption of disuse by short duration walking exercise does not prevent bone loss in the sheep calcaneus. Bone 1995;16(2):269–74.

    Article  PubMed  CAS  Google Scholar 

  45. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone-mineral loss and recovery after 17 weeks of bed rest. Journal of Bone and Mineral Research 1990;5(8):843–50.

    Article  PubMed  CAS  Google Scholar 

  46. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone-mineral density as risk-factors for hip fracture in ambulatory elderly. Jama – Journal of the American Medical Association 1994;271(2):128–33.

    Article  CAS  Google Scholar 

  47. Courtney AC, Wachtel EF, Myers ER, Hayes WC. Age-related reductions in the strength of the femur tested in a fall-loading configuration. The Journal of Bone and Joint Surgery 1995;77(3):387–95.

    PubMed  CAS  Google Scholar 

  48. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. Journal of Bone and Mineral Research 2001;16(1):148–56.

    Article  PubMed  CAS  Google Scholar 

  49. Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: A randomized controlled trial in children. Journal of Pediatrics 2002;141(3):357–62.

    Article  PubMed  Google Scholar 

  50. Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Medicine and Science in Sports and Exercise 2000;32(6):1051–7.

    Article  PubMed  CAS  Google Scholar 

  51. Snow CM, Shaw JM, Winters KM, Witzke KA. Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. Journals of Gerontology Series a – Biological Sciences and Medical Sciences 2000;55(9):M489–M491.

    Article  CAS  Google Scholar 

  52. Burr DB, Martin RB, Martin PA. Lower-extremity loads stimulate bone-formation in the vertebral column – Implications for osteoporosis. Spine 1983;8(7):681–6.

    Article  PubMed  CAS  Google Scholar 

  53. Prendergast PJ, Huiskes R. Microdamage and osteocyte-lacuna strain in bone: A microstructural finite element analysis. Journal of Biomechanical Engineering-Transactions of the Asme 1996;118(2):240–6.

    Article  CAS  Google Scholar 

  54. Frost HM. Mechanical usage, bone mass, bone fragility: A brief overview. In: Kleerekoper M, Krane SM, Eds. Clinical disorders of bone and mineral metabolism. New York: Mary Ann Liebert, Inc.; 1989:15–40.

    Google Scholar 

  55. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Brånemark implants affects interfacial bone modeling and remodeling. International Journal of Oral & Maxillofacial Implants 1994;9:345–60.

    Google Scholar 

  56. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Sloten JV, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: An animal experimental study. Clinical Oral Implants Research 2001;12(3):207–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Samuel, S.P., Baran, G.R., Wei, Y., Davis, B.L. (2009). Biomechanics - Part II. In: Khurana, J. (eds) Bone Pathology. Humana Press. https://doi.org/10.1007/978-1-59745-347-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-347-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-766-2

  • Online ISBN: 978-1-59745-347-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics