Skip to main content

Abstract

The members of the transforming growth factor-β (TGF-β) superfamily are involved in the regulation of many crucial biological processes including cell proliferation, differentiation, ECM remodelling, metastasis and apoptosis of different cell types.

On the other hand, components of the TGF-β signaling cascade are considered classic tumor-suppressors that can play multiple roles in carcinogenesis, acting as tumor suppressors during early stage disease and as tumor promoters at later stages of tumorigenesis. Loss of TGF-β-induced growth inhibition, which is characteristic for many types of cancers, has been associated with disruption and/or dysregulation of the TGF-β pathway, which may facilitate invasion, metastasis, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Godkin JD, Dore JJE. Transforming growth factor β and endometrium. Rev Reprod 1998;3:1–6.

    Article  CAS  PubMed  Google Scholar 

  2. Massagué J, Blain SW, Lo RS. TGFβ signalling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  3. Ingman WV, Robertson SA. Defining the actions of transforming growth factor beta in reproduction. Bioessays 2002;24:904–914.

    Article  CAS  PubMed  Google Scholar 

  4. Chegini N, Zhao Y, Williams RS, Flanders KC. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, and TGF beta type II receptor messenger ribonucleic acid and, protein and contains [125I]TGF beta 1-binding sites. Endocrinology 1994;135:439–449.

    Article  CAS  PubMed  Google Scholar 

  5. Bruner KL, Rodgers WH, Gold LI, et al. Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma, in the human endometrium. Proc Natl Acad Sci USA 1995;92:7362–7366.

    Article  CAS  PubMed  Google Scholar 

  6. Luo X, Xu J, Chegini N. The expression of Smads in human endometrium and regulation and induction in endometrial epithelial and stromal cells by transforming growth factor-beta. J Clin Endocrinol Metab 2003;88:4967–4976.

    Article  CAS  PubMed  Google Scholar 

  7. Parekh TV, Gama P, Wen X, et al. Transforming growth factor beta signalling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res 2002;62: 2778–2790.

    CAS  PubMed  Google Scholar 

  8. Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Jakowicki JA, Krajewska WM. Expression of TGF-beta type I and II receptors in normal and cancerous human endometrium. Cancer Lett 2002;186: 231–239.

    Article  CAS  PubMed  Google Scholar 

  9. Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Jakowicki JA, Krajewska WM. Expression and intracellular localization of Smad proteins in human endometrial cancer. Oncol Rep 2003;10(5): 1539–1544.

    CAS  PubMed  Google Scholar 

  10. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 2002;23:787–823.

    Article  CAS  PubMed  Google Scholar 

  11. Miyazono K, Olofsson A, Colosetti P, Heldin C-H. A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J 1991; 10(5):1091–1101.

    CAS  PubMed  Google Scholar 

  12. Saharinen J, Hyytiainen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 1999;10(2):99–117.

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence DA. Latent-TGF-beta: an overview. Mol Cell Biochem 2001;219(1–2):163–170.

    Article  CAS  PubMed  Google Scholar 

  14. Hyytiainen M, Penttinen C, Keski-Oja J. Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci. 2004;41(3):233–264.

    Article  PubMed  Google Scholar 

  15. Massagué J. How cells read TGF-β signals? Nat Rev Mol Cell Biol 2000;1:169–178.

    Article  PubMed  Google Scholar 

  16. Miyazono K, ten Dijke P, Heldin C-H. TGFβ signalling by Smad proteins. Adv Immunol 2000;75: 115–157.

    Article  CAS  PubMed  Google Scholar 

  17. Piestrzeniewicz-Ulanska D, Brys M, Krajewska WM. The Smad pathway in TGF-β signalling. Cell Mol Biol Lett 2000;5:381–396.

    Google Scholar 

  18. Shi Y, Massagué J. Mechanisms of TGF-beta signalling from cell membrane to the nucleus. Cell 2003;113(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  19. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19(23):2783–2810.

    Article  PubMed  Google Scholar 

  20. Di Guglielmo GM, Le Roy Ch, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003;5(5):410–421.

    Article  PubMed  Google Scholar 

  21. Izzi L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 2004;23(11):2071–2078.

    Article  CAS  PubMed  Google Scholar 

  22. Letamendia A, Lastres P, Botella LM, et al. Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem 1998;273:33,011–33,019.

    Article  CAS  PubMed  Google Scholar 

  23. Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J 2003;17:984–992.

    Article  CAS  PubMed  Google Scholar 

  24. del Re E, Babitt JL, Pirani A, Schneyer AL, Lin HY. In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. J Biol Chem 2004;279:22,765–22,772.

    Article  PubMed  Google Scholar 

  25. Blobe GC, Schiemann WP, Pepin MC, et al. Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signalling. J Biol Chem 2001;276:24,627–24,637.

    Article  CAS  PubMed  Google Scholar 

  26. Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F. Ligand binding and functional, properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 2001;276:14,588–14,596.

    Article  CAS  PubMed  Google Scholar 

  27. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 2002;277:29,197–29,209.

    Article  CAS  PubMed  Google Scholar 

  28. Parker WL, Goldring MB, Philip A. Endoglin is expressed on human chondrocytes and forms a heteromeric complex with betaglycan in a ligand and type II TGFβ receptor independent manner. J Bone Miner Res 2003;18(2):289–302.

    Article  CAS  PubMed  Google Scholar 

  29. Piestrzeniewicz-Ulanska D, Krajewska WM. Crossing path with Smads. In: Protein Modules in Cellular Signalling. Heilmeyer L and Friedrisch P (eds). NATO Science Series, IOS Press, 2001; 318:123–131.

    Google Scholar 

  30. Moustakas A, Heldin C-H. Non-Smad TGF-β signals. J Cell Sci 2005;118(16):3573–3584.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signalling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J 2003;17(11):1576–1578.

    CAS  PubMed  Google Scholar 

  32. ten Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem Sci 2004;29(5): 265–273.

    Article  PubMed  Google Scholar 

  33. Piek E, Heldin C-H, ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signalling. FASEB J 1999;13(15):2105–2124.

    CAS  PubMed  Google Scholar 

  34. Rosario G, Sachdeva G, Okulicz WC, Ace CI, Katkam RR, Puri CP. Role of progesterone in structural and biochemical remodeling of endometrium Front Biosci 2003;8:924–935.

    Article  Google Scholar 

  35. Kodaman PH, Taylor HS. Hormonal regulation of implantation. Obstet Gynecol Clin North Am 2004; 31(4):745–766.

    Article  PubMed  Google Scholar 

  36. Sivridis E, Giatromanolaki A. New insights into the normal menstrual cycle-regulatory molecules. Histol Histopathol 2004;19(2):511–516.

    CAS  PubMed  Google Scholar 

  37. Marshburn PB, Arici AM, Casey ML. Expression of transforming growth factor beta (TGF-β1) mRNA and the modulation of DNA synthesis by TGF-β1 in human endometrial cells. Am J Obstet Gynecol 1994;170:1152–1158.

    CAS  PubMed  Google Scholar 

  38. Tang XM, Zhao Y Rossi MJ Abu-Rustum RS, Ksander GA, Chegini N. Expression of transforming growth factor-β (TGF-β) isoforms and TGF-β type II receptor messenger ribonucleic acid and protein, and the effect of TGF-βs on endometrial stromal cell growth and protein degradation in vitro, Endocrinology 1994;135:450–459.

    Article  CAS  PubMed  Google Scholar 

  39. Dumont N, O’Connor-McCourt MD, Philip A. Transforming growth factor-beta receptors on human endometrial cells identification of the type I, II, and III receptors and glycosyl-phosphatidylinositol anchored TGF-beta binding proteins. Mol Cell Endocrinol 1995;28:57–66.

    Article  Google Scholar 

  40. Ando N, Hirahara F, Fukushima J, et al. Differential gene expression of TGF-beta isoforms and TGF-beta receptors during the first trimester of pregnancy at the human maternal-fetal interface. Am J Reprod Immunol 1998;40(1):48–56.

    CAS  PubMed  Google Scholar 

  41. Kanzaki H, Hatayama H, Narukawa S, Kariya M, Fujita J, Mori T. Hormonal regulation in the production of macrophage colony-stimulating factor and transforming growth factor-beta by human endometrial stromal cells in culture. Horm Res 44 Suppl 1995;2:30–35.

    Article  Google Scholar 

  42. Arici A, MacDonald PC, Casey ML. Modulation of the levels of transforming growth factor beta messenger ribonucleic acids in human endometrial stromal cells. Biol Reprod 1996;54(2):463–469.

    Article  CAS  PubMed  Google Scholar 

  43. Reis FM, Ribeiro MF, Maia AL, Spritzer PM. Regulation of human endometrial transforming growth factor betal and beta3 isoforms through menstrual cycle and medroxyprogesterone acetate treatment. Histol Histopathol 2002;17(3):739–745.

    CAS  PubMed  Google Scholar 

  44. Gold LI, Saxena B, Mittal KR. Increased expression of transforming growth factor 1 and 3 isoforms and basic fibroblast growth factor in complex hyperplasia and adenocarcinoma of the endometrium-evidence for paracrine and autocrine action. Cancer Res 1994;54:2347–2358.

    CAS  PubMed  Google Scholar 

  45. Kim MR, Park DW, Lee JH, et al. Progesterone-dependent release of transforming growth factor-betal from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol Hum Reprod 2005;11(11):801–808.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang EG, Smith SK, Charnock-Jones DS. Expression of CD105 (endoglin) in arteriolar endothelial cells of human endometrium throughout the menstrual cycle. Reproduction 2002;24(5):703–711.

    Article  Google Scholar 

  47. Goumans M-J, Valdimarsdottir G, Itoh S, et al. Activin Receptor-like Kinase (ALK)1 Is an Antagonistic Mediator of Lateral TGFβ/ALK5 Signalling. Mol Cell 2003;12:817–828.

    Article  CAS  PubMed  Google Scholar 

  48. Lebrin F, Goumans M-J, Jonker L, et al. Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J 2004;23:4018–4028.

    Article  CAS  PubMed  Google Scholar 

  49. Lacey JV Jr., Brinton LA, Lubin JH, Sherman ME, Schatzkin A, Schairer C. Endometrial carcinoma risks among menopausal estrogen plus progestin and unopposed estrogen users in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2005;14(7):1724–1731.

    Article  CAS  PubMed  Google Scholar 

  50. Sherman ME. Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol 2000;13(3):295–308.

    Article  CAS  PubMed  Google Scholar 

  51. Koul A, Willen R, Bendahl PO, Nilbert M, Borg A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumourigenesis. Cancer 2000;94(9):2369–2379.

    Article  Google Scholar 

  52. Abal M, Planaguma J, Gil-Moreno A, et al. Molecular pathology of endometrial carcinoma: transcriptional signature in endometrioid tumours. Histol Histopathol 2006;21 (2):197–204.

    CAS  PubMed  Google Scholar 

  53. Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 2004;444(3):213–223.

    Article  CAS  PubMed  Google Scholar 

  54. Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-ß signal transduction in angiogenesis and vascular disorders. Chest 2005;128:585S–590S.

    Article  CAS  PubMed  Google Scholar 

  55. Nawshad A, Lagamba D, Polad A, Hay ED. Transforming growth factor-beta signalling during epithelialmesenchymal transformation: implications for embryogenesis and tumour metastasis. Cells Tissues Organs 2005;179(1–2):11–23.

    Article  CAS  PubMed  Google Scholar 

  56. Albright CD, Kaufman DG. Transforming growth factor-beta 1 mediates communication between human endometrial carcinoma cells and stromal cells. Pathobiology 1995;63 (6):314–319.

    Article  CAS  PubMed  Google Scholar 

  57. Perlino E, Loverro G, Maiorano E, et al. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma. Br J Cancer 1998;77(8):1260–1266.

    CAS  PubMed  Google Scholar 

  58. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  59. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000;11(1–2):159–168.

    Article  CAS  PubMed  Google Scholar 

  60. Nakashima R, Song H, Enomoto T, et al. Genetic alterations in the transforming growth factor receptor complex in sporadic endometrial carcinoma. Gene Expr 1999;8(5–6):341–352.

    CAS  PubMed  Google Scholar 

  61. Markowitz J, Wang L, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–1338.

    Article  CAS  PubMed  Google Scholar 

  62. Meyeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor β type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 1995;55:5545–5547.

    Google Scholar 

  63. Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer, Cancer Res 1995;55:5548–5550.

    CAS  PubMed  Google Scholar 

  64. Samowitz WS, Slattery ML. Transforming growth factor-beta receptor type 2 mutations and microsatellite instability in sporadic colorectal adenomas and carcinomas. Am J Pathol 1997;151:33–35.

    CAS  PubMed  Google Scholar 

  65. Ohwada M, Suzuki M, Saga Y, et al. Mutational analysis of transforming growth factor beta receptor type II and DNA mismatch repair genes in sporadic endometrial carcinomas with microsatellite instability. Oncol Rep 2000;7(4):789–792.

    CAS  PubMed  Google Scholar 

  66. Kanaya T, Kyo S, Maida Y, et al. Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene 2003;22 (15):2352–2360.

    Article  CAS  PubMed  Google Scholar 

  67. Sakaguchi J, Kyo S, Kanaya T, et al. Aberrant expression and mutations of TGF-beta receptor type II gene in endometrial cancer. Gynecol Oncol 2005;98(3):427–433.

    Article  CAS  PubMed  Google Scholar 

  68. Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Rechberger T, Jakowicki JA, Krajewska WM. TGF-beta signaling is disrupted in endometrioid-type endometrial carcinomas. Gynecol Oncol 2004;95(1):173–180.

    Article  CAS  PubMed  Google Scholar 

  69. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: Tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2000;2(2):125–132.

    Article  CAS  PubMed  Google Scholar 

  70. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  71. Wakefield LM, Roberts AB TGF-beta signalling: positive and negative effects on tumourigenesis. Curr Opin Genet Dev 2002;12(1):22–29.

    Article  CAS  PubMed  Google Scholar 

  72. Salvesen HB, Gulluoglu MG, Stefansson I, Akslen LA. Significance of CD 105 expression for tumour angiogenesis and prognosis in endometrial carcinomas. APMIS 2003;111(11):1011–1018.

    Article  PubMed  Google Scholar 

  73. Saad RS, Jasnosz KM, Tung MY, Silverman JF. Endoglin (CD105) expression in endometrial carcinoma. Int J Gynecol Pathol 2003;22(3):248–253.

    Article  PubMed  Google Scholar 

  74. Florio P, Ciarmela P, Reis FM, et al. Inhibin alpha-subunit and the inhibin coreceptor betaglycan are downregulated in endometrial carcinoma. Eur J Endocrinol 2005;152(2):277–284.

    Article  CAS  PubMed  Google Scholar 

  75. Shi Y. Structural insight on Smad function in TGF-β signalling. Bioessays 2001;23:223–232.

    Article  CAS  PubMed  Google Scholar 

  76. Rich JN, Borton AJ, Wang X-F. Transforming growth factor-β signalling in cancer. Microsc Res Techniq 2001;52:363–373.

    Article  CAS  Google Scholar 

  77. MacGrogan D, Pegram M, Slamon D, Brookstein R. Comparative mutations analysis of PDC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene 1997;15:1111–1114.

    Article  CAS  PubMed  Google Scholar 

  78. Hata A, Lo RS, Wotton D, Lagna G, Massagué J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 1997;388:82–87.

    Article  CAS  PubMed  Google Scholar 

  79. Le Dai J, Turnacioglu KK, Schutte M, Sugar AY, Kern SE. DPC4 transcriptional activation and dysfunction in cancer cells. Cancer Res 1998;58:4592–4597.

    CAS  PubMed  Google Scholar 

  80. Toda T, Oku H, Khaskhely NM, Moromizato H, Ono I, Murata T. Analysis of microsatelite, instability and loss of heterozygosity in uterine endometrial adenocarcinoma. Cancer Genet Cytogenet 2001;126:120–127.

    Article  CAS  PubMed  Google Scholar 

  81. Schutte M, Hurban RH, Hedrick L, et al. DPC4 gene in various tumour types. Cancer Res 1996;56:2527–2530.

    CAS  PubMed  Google Scholar 

  82. Zhou Y, Kato H, Shan D, et al. Involvement of mutations in the DPC4 promoter in endometrial carcinoma development. Mol Carcinogen 1999;25:64–72.

    Article  CAS  Google Scholar 

  83. Liu FS, Chen JT, Hsieh YT, et al. Loss of Smad4 protein expression occurs infrequently in endometrial carcinomas. Int J Gynecol Pathol 2003;22(4):347–352.

    Article  PubMed  Google Scholar 

  84. Wang D, Kanuma T, Takama F, et al. Mutation analysis of the Smad3 gene in human ovarian cancers. Int J Oncol 1999;15:949–953.

    PubMed  Google Scholar 

  85. Boulay JL, Mild G, Lowy A, et al. Smad7 is a prognostic marker in patients with colorectal cancer. Int J Cancer 2003;104:446–449.

    Article  CAS  PubMed  Google Scholar 

  86. Dowdy SC, Mariani A, Reinholz MM, et al. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 2005;96(2):368–373.

    Article  CAS  PubMed  Google Scholar 

  87. Jules JE, Doré Jr., Diying Yao, et al. Mechanisms of transforming growth factor-β receptor endocytosis and intracellular sorting differ between fibroblasts and epithelial cells. Mol Biol Cell 2001;12(3):675–684.

    Google Scholar 

  88. Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched early endosomes: role in signalling to Smad2. J Cell Biol 2002;158(7):1239–1249.

    Article  CAS  PubMed  Google Scholar 

  89. Miura S, Takeshita T, Asao H, et al. Hgs (Hrs), a FYVE domain protein, is involved in Smad signalling through cooperation with SARA. Mol Cell Biol 2000;20(24):9346–9355.

    Google Scholar 

  90. Itoh F, Divecha N, Brocks L, et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 2002;7(3):321–331.

    Article  CAS  PubMed  Google Scholar 

  91. Runyan CE, Schnaper HW, Poncelet AC. The role of internalization in transforming growth factor betal-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signalling in human mesangial, cells. J Biol Chem 2005;280(9):8300–8308.

    Article  CAS  PubMed  Google Scholar 

  92. Mishra L, Marshall B. Adaptor proteins and ubiquinators in TGF-beta signalling. Cytokine Growth Factor Rev 2006;17(1–2):75–87.

    Article  CAS  PubMed  Google Scholar 

  93. Nagarajan RP, Zhang J, Li W, Chen Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem 1999;274:33,412–33,418.

    Article  CAS  PubMed  Google Scholar 

  94. Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000;6:1365–1375.

    Article  CAS  PubMed  Google Scholar 

  95. Ebisawa M, Fukuchi G, Murakami T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001;276:12,477–12,480.

    Article  CAS  PubMed  Google Scholar 

  96. Shi W, Sun C, He B, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 2004;164(2):291–300.

    Article  CAS  PubMed  Google Scholar 

  97. Turi A, Kiss AL, Mullner N. Estrogen downregulates the number of caveolae, and the level of caveolin in uterine smooth muscle. Cell Biol Int 2001;25(8):785–794.

    Article  CAS  PubMed  Google Scholar 

  98. Koul A, Bendahl PO, Borg A, et al. TP53 protein expression analysis by luminometric immunoassay in comparison with gene mutation status and prognostic factors in early stage endometrial cancer. Int J Gynecol Cancer 2002;12(4):362–371.

    Article  PubMed  Google Scholar 

  99. Terence M. Williams, Michael P Lisanti. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005;288:C494–C506.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Piestrzeniewicz-Ulanska, D., McGuinness, D.H., Yeaman, G.R. (2008). TGF-β Signaling in Endometrial Cancer. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics