Skip to main content

Engineering TGF-β Traps: Artificially Dimerized Receptor Ectodomains as High-affinity Blockers of TGF-β Action

  • Chapter
Book cover Transforming Growth Factor-β in Cancer Therapy, Volume II

Abstract

Receptor ectodomain-based ligand traps are a new class of candidate therapeutics that can be optimized using protein engineering approaches that are built on an understanding of the interactions between natural receptors and their ligands. We present here a summary of our characterization of TGF-β ligand-receptor interactions using primarily surface plasmon resonance (SPR)-based biosensor analyses. The results of those studies lead us to hypothesize that artificial dimerization of TGF-β receptor ectodomains may provide a bridged-binding avidity effect that promotes stable binding and increased ligand trapping potency. We confirmed this by utilizing a de novo designed heterodimerizing coiled-coil peptide system to generate, and compare in a systematic manner, monomeric and dimeric versions of soluble TGF-β receptor ectodomains. Finally, we discuss how the potency and specificity of artificially dimerized receptor ectodomain-based traps may compare favorably with other classes of TGF-β pathway inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts AB, Sporn MB. The transforming growth factor-betas In: Peptide Growth Factors and their Receptors (Roberts AB and Sporn MB eds.), Berlin; New York, Springer-Verlag, Handbook of Experimental Pharmacology vol 95. 1990;pp. 421–472.

    Google Scholar 

  2. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.

    Article  CAS  PubMed  Google Scholar 

  3. Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997;124:2659–2670.

    CAS  PubMed  Google Scholar 

  4. Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995;11:409–414.

    Article  CAS  PubMed  Google Scholar 

  5. Wrana JL, Attisano L, Carcamo J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 1992;71:1003–1014.

    Article  CAS  PubMed  Google Scholar 

  6. Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  7. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin C-H. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 1994;269:20,172–20,178.

    CAS  PubMed  Google Scholar 

  8. Gilboa L, Wells RG, Lodish HF, Henis YI. Oligomeric structure of type I and type II transforming growth factor beta receptors: homodimers form in the ER and persist at the plasma membrane. J Cell Biol 1998;140:767–777.

    Article  CAS  PubMed  Google Scholar 

  9. Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP. Crystal structure of the human TbetaR2 ectodomain-TGF-beta3 complex. Nat Struct Biol 2002;9:203–208.

    CAS  PubMed  Google Scholar 

  10. Franzen P, ten Dijke P, Ichijo H, et al. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell 1993;75:681–692.

    Article  CAS  PubMed  Google Scholar 

  11. De Crescenzo G, Grothe S, Zwaagstra J, Tsang M, O’Connor-McCourt MD. Real-time monitoring of the interactions of transforming growth factor-beta (TGF-beta) isoforms with latency-associated protein and the ectodomains of the TGF-beta type II and III receptors reveals different kinetic models and stoichiometries of binding. J Biol 2001;276:29,632–29,643.

    Google Scholar 

  12. Cheifetz S, Hernandez H, Laiho M, ten Dijke P, Iwata KK, Massagué J. Distinct transforming growth factor-beta (TGF-beta) receptor subsets as determinants of cellular responsiveness to three TGF-beta isoforms. J Biol Chem 1990;265:20,533–20,538.

    CAS  PubMed  Google Scholar 

  13. López-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGG beta signaling receptor. Cell 1993;73:1435–1444.

    Article  PubMed  Google Scholar 

  14. López-Casillas F, Payne HM, Andres JL, Massagué J. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994;124:557–568.

    Article  PubMed  Google Scholar 

  15. Zhang L, Esko JD. Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem 1995;269:19,295–19,299.

    Google Scholar 

  16. Moustakas A, Lin HY, Henis YI, Plamondon J, O’Connor-McCourt MD, Lodish HF. The transforming growth factor beta receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J Biol Chem 1993;268:22,215–22,218.

    CAS  PubMed  Google Scholar 

  17. Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F. Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 2001;276:14,588–14,596.

    Article  CAS  PubMed  Google Scholar 

  18. Pepin MC, Beauchemin M, Plamondon J, O’Connor-McCourt MD. Mapping of the ligand binding domain of the transforming growth factor beta receptor type III by deletion mutagenesis. Proc Natl Acad Sci USA 1994;91:6997–7001.

    Article  CAS  PubMed  Google Scholar 

  19. Pepin MC, Beauchemin M, Collins C, Plamondon J, O’Connor-McCourt MD. Mutagenesis analysis of the membrane-proximal ligand binding site of the TGF-beta receptor type III extracellular domain. FEBS Lett 1995;377:368–372.

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi A, Matsuzaki K, Nakano K, Kan M, McKeehan WL. Ligand-dependent and-independent interactions with the transforming growth facor type II and I receptor subunits reside in the aminoterminal portion of the ectodomain of the type III subunit. In Vitro Cell Dev Biol Anim 1998;34:232–238.

    Article  CAS  PubMed  Google Scholar 

  21. Vilchis-Landeros MM, Montiel JL, Mendoza V, Mendoza-Hernandez G, López-Casillas F. Recombinant soluble betaglycan is a potent and isoform-selective transforming growth factor-beta neutralizing agent. Biochem J 2001;355:215–222.

    Article  CAS  PubMed  Google Scholar 

  22. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  23. Akhurst RJ, Derynck R. TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol 2001; 11:S44–S51.

    CAS  PubMed  Google Scholar 

  24. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109:1551–1559.

    CAS  PubMed  Google Scholar 

  25. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607–1615.

    CAS  PubMed  Google Scholar 

  26. Kakonen SM, Selander KS, Chirwin JM, et al. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 2002;277:24,571–24,578.

    Article  CAS  PubMed  Google Scholar 

  27. Yin JJ, Selander K, Chirgwin JM, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999;103:197–206.

    Article  CAS  PubMed  Google Scholar 

  28. Cui W, Fowlis DJ, Bryson S, et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996;86:531–542.

    Article  CAS  PubMed  Google Scholar 

  29. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  Google Scholar 

  30. Blobe GC, Schiemann WP, Lodish HF Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  31. Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S, Korc M. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin Cancer Res 2001;7:2931–2940.

    CAS  PubMed  Google Scholar 

  32. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 1999;59:5041–5046.

    CAS  PubMed  Google Scholar 

  33. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607–1615.

    CAS  PubMed  Google Scholar 

  34. De Crescenzo G, Grothe S, Lortie R, Debanne MT, O’Connor-McCourt MD. Real-time kinetic studies on the interaction of transforming growth factor alpha with the epidermal growth factor receptor extracellular domain reveal a conformational change model. Biochemistry 2000;39:9466–9476.

    Article  PubMed  Google Scholar 

  35. Fisher RJ, Fivash M. Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions. Curr Opin Biotechnol 1994;5:389–395.

    Article  CAS  PubMed  Google Scholar 

  36. Morton TA, Myszka DG, Chaiken IM. Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal Biochem 1995;227:176–185.

    Article  CAS  PubMed  Google Scholar 

  37. Luo K, Lodish HF. Signaling by chimeric erythropoietin-TGF-beta receptors: homodimerization of the cytoplasmic domain of the type I TGF-beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J 1996;15:4485–4496.

    CAS  PubMed  Google Scholar 

  38. Wells RG, Gilboa L, Sun Y, Liu X, Henis YI, Lodish HF. transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type II receptor complex in live cells. J Biol Chem 1999;274:5716–5722.

    Article  CAS  PubMed  Google Scholar 

  39. Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB. An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem 1994;216:276–284.

    Article  CAS  PubMed  Google Scholar 

  40. Chao H, Houston ME, Jr., Grothe S, et al. Kinetic study on the formation of a de novo designed heterodimeric coiled-coil: use of surface plasmon resonance to monitor the association and dissociation of polypeptide chains. Biochemistry 1996;35:12,175–12,185.

    Article  CAS  PubMed  Google Scholar 

  41. Laiho M, Weis MB, Massagué J. Concomitant loss of transforming growth factor (TGF)-beta receptor types I and II in TGF-beta-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem 1990;265:18,518–18,524.

    CAS  PubMed  Google Scholar 

  42. Fukushima D, Butzow R, Hildebrand A, Ruoslahti E. Localization of transforming growth factor beta binding site in betaglycan. Comparison with small extracellular matrix proteoglycans. J Biol Chem 1993;268:22,710–22,715.

    CAS  PubMed  Google Scholar 

  43. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;6:531–536.

    Article  Google Scholar 

  44. De Crescenzo G, Pham PL, Durocher Y, Chao H, O’Connor-McCourt MD. Enhancement of the antagonistic potency of transforming growth factor-beta receptor extracellular domains by coiled coil-induced homo-and heterodimerization. J Biol Chem 2004;279:26,013–26,018.

    Article  PubMed  Google Scholar 

  45. Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 1995;92:1254–1256.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

De Crescenzo, G., Chao, H., Zwaagstra, J., Durocher, Y., O’Connor-McCourt, M.D. (2008). Engineering TGF-β Traps: Artificially Dimerized Receptor Ectodomains as High-affinity Blockers of TGF-β Action. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_40

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics