Skip to main content

Regulation of Angiogenesis and Tumor Growth by Thrombospondin-1

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1550 Accesses

Abstract

Thrombospondin-1 (TSP-1) is a matricellular protein that has been implicated in playing an important role in inhibiting cancer progression. Many studies have been carried out to characterize the mechanism of its action. While its ability to inhibit tumor angiogenesis through binding of CD36 via the thrombospondin type 1 repeats (TSRs) sequence have been well studied, the long-range effect of TSP-1’s ability to activate transforming growth factor β (TGF-β) is just starting to be characterized. One such effect is shifting the balance of the fibrinolytic system through TSP-1’s ability to inhibit matrix metalloproteinases and plasminogen activator inhibitor-1. A shift in either direction could promote tumor progression, including metastasis, or prevent it by reducing tumor angiogenesis. This delicate balance may be responsible for the conflicting data in the literature on whether TSP-1 is proor antitumorigenic, and the direction of the shift may also be cell-type specific. Lastly, the potential of developing a TSP-based therapy is being realized and clinical trials are now underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson CB, Bernstein DA, Annis DS, et al. Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 2005;12:910–914.

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 2000;19:597–614.

    Article  CAS  PubMed  Google Scholar 

  3. Elzie CA, Murphy-Ullrich JE. The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 2004;36:1090–1101.

    Article  CAS  PubMed  Google Scholar 

  4. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinases 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001;276:8403–8408.

    Article  CAS  PubMed  Google Scholar 

  5. Kvansakul M, Adams JC, Hohenester E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 2004;23:1223–1233.

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Deere M, Hecht JT, Lawler J. Cartilage oligomeric matrix protein is a calcium binding protein and a mutation in the type 3 repeats causes conformational changes. J Biol Chem 2000;275:26,538–26,544.

    Article  CAS  PubMed  Google Scholar 

  7. Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol 2004;36:969–974.

    Article  CAS  PubMed  Google Scholar 

  8. Lawler J, Detmar M. Tumor Progression: the effects of thrombospondin-1 and-2. Int J Biochem Cell Biol 2004;36:1038–45.

    Article  CAS  PubMed  Google Scholar 

  9. Yano K, Brown LF, Lawler J, Miyakawa T, Detmar M. Thrombospondin-1 plays a critical role in the induction of hair follicle involution and vascular regression during the catagen phase. J Invest Dermatol 2003;120:14–19.

    Article  CAS  PubMed  Google Scholar 

  10. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582–1584.

    Article  CAS  PubMed  Google Scholar 

  11. Watnick RS, Cheng Y-N, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003;3:219–231.

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  13. Brown LF, Guidi AJ, Schnitt SJ, et al. Vascular stroma formation in carcinoma of the breast. Clin Cancer Res 1999;5:1041–1056.

    CAS  PubMed  Google Scholar 

  14. Lawler J, Miao W-M, Duquette M, Bouck N, Bronson RT, Hynes RO. Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol 2001;159:1949–1956.

    CAS  PubMed  Google Scholar 

  15. Sund M, Hamano Y, Sugimoto H, et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA 2005;102:2934–2939.

    Article  CAS  PubMed  Google Scholar 

  16. Kalas W, Yu JL, Milsom C, et al. Oncogenes and angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras. Cancer Res 2005;65:8878–8886.

    Article  CAS  PubMed  Google Scholar 

  17. Filleur S, Volpert OV, Degeorges A, et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001;15:1373–1382.

    Article  CAS  PubMed  Google Scholar 

  18. Fontana A, Filleur S, Guglielmi J, et al. Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer 2005;116:686–691.

    Article  CAS  PubMed  Google Scholar 

  19. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD. Thrombospondin-1 inhibits endothelial cell responses to nitrix oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 2005;102:13,141–13,146.

    Article  CAS  PubMed  Google Scholar 

  20. Dawson DW, Pearce SFA, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997;138:707–717.

    Article  CAS  PubMed  Google Scholar 

  21. Simantov R, Silverstein RL. CD36: a critical anti-angiogenic receptor. Front Biosci 2003;8:s874.

    Article  Google Scholar 

  22. Tao N, Wagner SJ, Lublin DM. CD36 is palmitoylated on both N-and C-terminal cytoplasmic tails. J Biol Chem 1996;271:22,315–22,320.

    Article  CAS  PubMed  Google Scholar 

  23. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Med 2000;6:41–48.

    Article  PubMed  Google Scholar 

  24. Volpert OV, Pili R, Sikder H, et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2002;2:473–483.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Galardi E, Duquette M, Delic M, Lawler J, Parangi S. Antiangiogenic treatment with three thrombospondin-1 type 1 repeats recombinant proteins in an orthotopic human pancreatic cancer model. Clin Cancer Res 2005;11:1–8.

    Google Scholar 

  26. Short S, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by β1 integrins. J Cell Biol 2005;168:643–653.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 1999;3:147–158.

    Article  CAS  PubMed  Google Scholar 

  28. Bein K, Simons M. Thrombospondin-1 type 1 repeats interact with matrix metalloproteinase 2: Regulation of metalloproteinase activity. J Biol Chem 2000;275:32,167–32,173.

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metallo-proteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001;98:12,485–12,490.

    Article  PubMed  Google Scholar 

  30. Qian X, Wang TN, Rothmann VL, Nicosia RF, Tuszynski GP. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exper Cell Res 1997;235:403–412.

    Article  CAS  Google Scholar 

  31. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993;122:497–511.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.

    Article  CAS  PubMed  Google Scholar 

  33. Lawler J, Sunday M, Thibert V, et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998;101:982–992.

    Article  CAS  PubMed  Google Scholar 

  34. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998;93:1159–1170.

    Article  CAS  PubMed  Google Scholar 

  35. Munger JS, Huang X, Kawakatsu H, et al. The integrin avß6 binds and activates latent TGFβ-1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

    Article  CAS  PubMed  Google Scholar 

  36. Ludlow A, Yee KO, Lipman R, et al. Characterization of integrin beta6 and thrombospondin-1 doublenull mice. J Cell Mol Med 2005;9:421–437.

    Article  CAS  PubMed  Google Scholar 

  37. Young GD, Murphy-Ullrich JE. The tryptophan-rich motifs of the thrombospondin type 1 repeats bind VLAL motifs in the latent transforming growth factor-beta complex J Biol Chem 2004;279: 47,633–47,642.

    Article  CAS  PubMed  Google Scholar 

  38. Young GD, Murphy-Ullrich JE. Molecular interactions that confer latency to transforming growth factor-beta. J Biol Chem 2004;279:38,032–38,039.

    Article  CAS  PubMed  Google Scholar 

  39. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci 1990;87:6624–6628.

    Article  CAS  PubMed  Google Scholar 

  40. Volpert OV, Lawler J, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci USA 1998;95:6343–6348.

    Article  CAS  PubMed  Google Scholar 

  41. Bleuel K, Popp S, Fusenig NE, Stanbridge EJ, Boukamp P. Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA 1999;96:2065–2070.

    Article  CAS  PubMed  Google Scholar 

  42. Taraboletti G, Benelli R, Borsotti P, et al. Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell and HIV-1 tat-induced angiogenesis and is poorly expressed in KS lesions. J Pathol 1999;188:76–81.

    Article  CAS  PubMed  Google Scholar 

  43. Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type-1 repeats. Circulation 1999; 100:1423–1431.

    CAS  PubMed  Google Scholar 

  44. Streit M, Velasco P, Brown LF, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 1999;155:441–452.

    CAS  PubMed  Google Scholar 

  45. Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J. Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of TGF-beta. Am J Pathol 2004;165:541–552.

    CAS  PubMed  Google Scholar 

  46. Miao W-M, Seng WL, Duquette M, Lawler P, Laus C, Lawler J. Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor β dependent and independent mechanisms. Cancer Res 2001;61:7830–7839.

    CAS  PubMed  Google Scholar 

  47. Harpel JG, Schultz-Cherry S, Murphy-Ullrich JE, Rifkin DB. Tamoxifen and estrogen effects on TGF-beta formation: role of thrombospondin-1, alphavbeta3, and integrin-associated protein. Biochem Biophys Res Comm 2001;284:11–14.

    Article  CAS  PubMed  Google Scholar 

  48. Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA. Transforming growth factor-β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ 1993;4:193–201.

    CAS  PubMed  Google Scholar 

  49. Thompson AM, Kerr DJ, Steel CM. Transforming growth factor beta 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 1991;63:609–614.

    CAS  PubMed  Google Scholar 

  50. Herman ME, Katzenellenbogen BS. Alterations in transforming growth factor-alpha and-beta production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth. Cancer Res 1990;54:5867–5874.

    Google Scholar 

  51. Okamoto M, Ono M, Uchiumi T, et al. Up-regulation of thrombospondin-1 gene by epidermal growth factor and transforming growth factor b in human cancer cells-transcriptional activation and messenger RNA stabilization. Biochim Biophys Acta 2002;1574:24–34.

    CAS  PubMed  Google Scholar 

  52. Cambier S, Gline S, Mu D, et al. Integrin avb8-mediated activation of transforming growth factor-β by perivascular astrocytes. Am J Pathol 2005;166:1883–1894.

    CAS  PubMed  Google Scholar 

  53. Kloen P, Gebhardt MC, Perez-Atayde A, et al. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer 1997;80:2230–2239.

    Article  CAS  PubMed  Google Scholar 

  54. Franchi A, Arganini L, Baroni G, et al. Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol 1998; 186:284–289.

    Article  Google Scholar 

  55. Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 2000;97:9624–9629.

    Article  CAS  PubMed  Google Scholar 

  56. RayChaudhury A, Frazier WA, D’Amore PA. Comparison of normal and tumorigenic endothelial cells: difference in thrombospondin-1 production and reponses to transforming growth factor-beta. J Cell Sci 1994;107:36–46.

    Google Scholar 

  57. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA. An activated form of TGF-β is produced by co-cultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 1989;86:4544–4548.

    Article  CAS  PubMed  Google Scholar 

  58. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of latent transforming growth factor beta 1-like molecule by plasmin during co-culture. J Cell Biol 1989;109:309–315.

    Article  CAS  PubMed  Google Scholar 

  59. Sheibani N, Frazier WA. Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotye and suppresses their tumorigenesis. Proc Natl Acad Sci USA 1995;92:6788–6792.

    Article  CAS  PubMed  Google Scholar 

  60. Albo D, Arnoletti JP, Castiglioni A, et al. Thrombospondin-1 (TSP) and transforming growth factor beta 1 (TGF-β) promote human A549 lung carcinoma cell plasminogen activator inhibitor type 1 (PAI-1) production and stimulate tumor cell attachment in vitro. Biochem Biophys Res Commun 1994; 203:857–865.

    Article  CAS  PubMed  Google Scholar 

  61. Arnoletti JP, Albo D, Granick MS, et al. Thrombospondin and transforming growth factor-beta 1 increase expression of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in human MDA-MB-231 breast cancer cells. Cancer 1995;76:998–1005.

    Article  CAS  PubMed  Google Scholar 

  62. Albo D, Berger DH, Vogel J, Tuszynski GP. Thrombospondin-1 and transforming growth factor beta-1 upregulate plasminogen activator inhibitor type 1 in pancreatic cancer. J Gastrointest Surg 1999;4:411–417.

    Article  Google Scholar 

  63. Albo D, Berger DH, Tuszynski GP. The effect of thrombospondin-1 and TGF-β1 on pancreatic cancer cell invasion. J Surg Res 1998;76:86–90.

    Article  CAS  PubMed  Google Scholar 

  64. Albo D, Berger DH, Wang TN, Hu X, Rothman V, Tuszynski GP. Thrombospondin-1 and transforming growth factor-beta 1 promote breast tumor cell invasion through up-regulation of the plasminogen/plasmin system. Surgery 1997;122:493–500.

    Article  CAS  PubMed  Google Scholar 

  65. Wang TN, Qian X, Granick MS, Solomon MP, Rothman VL, Tuszynski GP. The effect of thrombospondin on oral squamous carcinoma cell invasion of collagen. Am J Surg 1995;170:502–505.

    Article  CAS  PubMed  Google Scholar 

  66. Albo D, Rothman VL, Roberts DD, Tuszynski GP. Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. Br J Cancer 2000; 83:298–306.

    Article  CAS  PubMed  Google Scholar 

  67. Plate KH, Risau W. Angiogenesis in malignant gliomas. Glia 1995;15:339–347.

    Article  CAS  PubMed  Google Scholar 

  68. Pershouse MA, Stubblefield E, Hadi A, Killary AM, Yung WKA, Steck PA. Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res 1993;53:5043–5050.

    CAS  PubMed  Google Scholar 

  69. Hsu SC, Volpert OV, Steck PA, et al. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 1996;56:5684–5691.

    CAS  PubMed  Google Scholar 

  70. Kawataki T, Naganuma H, Sasaki A, Yoshikawa H, Tasaka K, Nukui H. Correlation of thrombospondin-1 and transforming growth factor-β expression with malignancy of glioma. Neuropathol 2000;20:161–169.

    Article  CAS  Google Scholar 

  71. Sasaki A, Naganuma H, Satoh E, Kawataki T, Amagasaki K, Nukui H. Participation of thrombospondin-1 in the activation of latent transforming growth factor β in malignant glioma cells. Neurol Med Chir (Tokyo) 2001;41:253–259.

    Article  CAS  Google Scholar 

  72. Amagasaki K, Sasaki A, Kato G, Maeda S, Nukui H, Naganuma H. Antisense-mediated reduction in thrombospondin-1 expression reduces cell motility in malignant glioma cells. Int J Cancer 2001;94:508–512.

    Article  CAS  PubMed  Google Scholar 

  73. Naganuma H, Satoh E, Kawataki T, Amagasaki K, Satoh H, Nukui H. Cell density regulates thrombospondin-1 production in malignant glioma cells. J Neuro-oncol 2003;63:147–153.

    Article  Google Scholar 

  74. Colombel M, Filleur S, Fournier P, et al. Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate. Cancer Res 2005;65:300–308.

    CAS  PubMed  Google Scholar 

  75. Hamano Y, Sugimoto H, Soubasakos MA, et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 2004;64:1570–1574.

    Article  CAS  PubMed  Google Scholar 

  76. Kieran M, Turner CD, Rubin JB, et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005;27:573–581.

    Article  PubMed  Google Scholar 

  77. Haviv F, Bradley MF, Kalvin DM, et al. Thrombspondin-1 mimetic peptide inhibitor of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. J Med Chem 2005;48:2838–2846.

    Article  CAS  PubMed  Google Scholar 

  78. Hoekstra R, de Vos FYFL, Eskens FALM, et al. Phase I Safety, pharmacokinetic, and pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer. J Clin Oncol 2005;23:5188–5197.

    Article  CAS  PubMed  Google Scholar 

  79. Khanna C, Rusk T, Haviv F, Henkin J. Antiangiogenic thrombospondin-1 peptides result in regression of naturally occurring cancers in pet dogs. Proc Am Soc Clin Oncol 2002;21:22a (abstract 85).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yee, K.O., Lawler, J. (2008). Regulation of Angiogenesis and Tumor Growth by Thrombospondin-1. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics