Skip to main content

TGF-β and HER2/ErbB2 and Breast Cancer Progression

  • Chapter
  • 1594 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Breast cancer progression is a result of deregulated expression of several interrelated biomarkers. In that context, complex relations between transforming growth factor-β (TGF-β) and human epidermal growth factor receptor 2 (HER2) are under intensive investigation. HER2 seems to provide proliferative advantage to tumor cells, increasing their survival ability during clonal selection, and TGF-β provides greater invasiveness and metastatic potential to these cells, leading to a more aggressive phenotype of breast cancer. Paradoxical acting of TGF-β during breast cancer progression could be based on disruption of the balance between various signaling pathways, such as Smad and Ras/MAPK pathways which are involved in mediating the tumor suppressor and oncogenic effects of TGF-β. The Ras/MAPK pathway also seems to have a central role in the HER2 signaling network. Smad and Ras/MAPK pathways can interact at different levels and with different outcomes, depending on cellular context, and may either synergize or antagonize each other. That could be especially important in breast cancer progression, contributing to the unique biological outcomes. In that case, selective inactivation of the pathway that is more important for the suppressor effects will promote tumor development while leaving the oncogenic response intact. If corresponding clinical research shows that a synergistic relation does exist between elevated levels of TGF-β and overexpressed HER2, it could lead to improvement in therapeutic strategies for breast cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ma X-J, Salunga R, Tuggle JT, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003;100:5974–5979.

    Article  CAS  PubMed  Google Scholar 

  2. Yokota J. Tumor progression and metastasis carcinogenesis. Carcinogenesis 2000;21:497–503.

    Article  CAS  PubMed  Google Scholar 

  3. Barcellos-Hoff MH, Ewan K. Transforming growth factor — beta and breast cancer. Mammary gland development. Breast Cancer Res 2000;2:92–99.

    Article  CAS  PubMed  Google Scholar 

  4. Kim S-J, Im Y-H, Markovitz S-D, Bang Y-J. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000;11:159–168.

    Article  CAS  PubMed  Google Scholar 

  5. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2000;2:125–132.

    Article  CAS  PubMed  Google Scholar 

  6. Markowitz SD, Roberts AB. Tumor supressor activity of the TGF-beta pathway in human cancers, Cytokine Growth Factor Rev 1996;7:93–102.

    Article  CAS  PubMed  Google Scholar 

  7. Reiss M, Barcellos-Hoff MH. Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res Treat 1997;45:81–95.

    Article  CAS  PubMed  Google Scholar 

  8. Tang B, Vu M, Booker T, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003;112:1116–1124.

    CAS  PubMed  Google Scholar 

  9. Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncog 1993;4:493–540.

    CAS  PubMed  Google Scholar 

  10. Takenoshita S, Mogi A, Tani M, et al. Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta receptor gene in sporadic human breast cancer. Oncol Rep 1998;5:367–371.

    CAS  PubMed  Google Scholar 

  11. Derynck R, Zhang Y, Feng X-H. Smads: transcriptional activators of TGF-beta responses. Cell 1998; 95:737–740.

    Article  CAS  PubMed  Google Scholar 

  12. Arteaga CL, Dugger Tc, Hurd SD. The multifunctional role of transforming growth factor (TGF)-betas on mammary epithelial cell biology. Breast Cancer Res Treat 1996;38:49–56.

    Article  CAS  PubMed  Google Scholar 

  13. Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000;19:1745–1754.

    Article  PubMed  Google Scholar 

  14. Gobbi H, Dupont WD, Simpson JF, et al. Transforming growth factor-beta and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst 1999;91:2096–2101.

    Article  CAS  PubMed  Google Scholar 

  15. Tobin SW, Douville K, Benbow U, Brinckerhoff CF, Memoli VA, Arrick BA. Consequences of altered TGF-beta expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects. Oncogene 2002;21:108–118.

    Article  CAS  PubMed  Google Scholar 

  16. Thiery JP, Chopin D. Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 1999;8:31–42.

    Article  Google Scholar 

  17. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994;127:2021–2036.

    Article  CAS  PubMed  Google Scholar 

  18. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-betal and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996;19:2462–2477.

    Article  Google Scholar 

  19. Pepper MS. Transforming growth factor beta: vasculogenesis, angiogenesis and vessel wall integrity. Cytokine Growth Factor Rev 1997;8:21–43.

    Article  CAS  PubMed  Google Scholar 

  20. Samuel SK, Hurta RA, Kondaiah P, et al. Autocrine induction of tumor protease production and invasion by metallothionein-regulated TGF-beta (Ser 223,225). EMBO J 1992;11:1599–1605.

    CAS  PubMed  Google Scholar 

  21. Pertowaara L, Kaipanen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblasts and epithelial cells. J Biol Chem 1994;269:6271–6274.

    Google Scholar 

  22. Ashcroft GS. Bidirectional regulation of macrophage function by TGF-beta. Microbes Infect 1999;1:1275–1282.

    Article  CAS  PubMed  Google Scholar 

  23. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137–161.

    Article  CAS  PubMed  Google Scholar 

  24. Casalini P, Iorio MV, Galmozi E, Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol 2004;200:343–350.

    Article  CAS  PubMed  Google Scholar 

  25. Harari D, Yarden Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 2000;19:6102–6112.

    Article  CAS  PubMed  Google Scholar 

  26. Klapper LN, Glathe S, Vaisman S, et al. The ErbB-2/HER2 oncoprotein of human carcinoma may function solely as shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 1999;96:4995–5000.

    Article  CAS  PubMed  Google Scholar 

  27. Graus-Porta D, Beerly RR, Daly JM, Hynes NE. ErbB2, the preffered heterodimerization partner of all Erb receptors, is a mediator of lateral signaling. EMBO J 1997;16:1647–1655.

    Article  CAS  PubMed  Google Scholar 

  28. Dowsett M, Cooke T, Ellis I, et al. Assessment of HER2 status in breast cancer: why, when and how? Eur J Cancer 1000;36:170–176.

    Article  Google Scholar 

  29. Jackson-Fischer AJ, Bellinger G, Ramabhadran R, Morris JK, Lee K-F, Stern DF. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci USA 2004;101:17,138–17,143.

    Article  Google Scholar 

  30. Simon R, Nocito A, Hubscher T, et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer, J Natl Cancer Inst 2001;93:1141–1146.

    Article  CAS  PubMed  Google Scholar 

  31. Muthuswamy SK, Li D, Lelievre S, Bissel MJ, Brudge JS. ErbB2, but not ErbB1, reinitiate proliferation and induce luminal repopulation in epithelial acini, Nat Cell Biol 2001;3:785–792.

    Article  CAS  PubMed  Google Scholar 

  32. Spencer KS, Graus-Porta D, Leng J, Hynes NE, Klemke RL. ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosinekinases. J Cell Biol 2000; 148:385–397.

    Article  CAS  PubMed  Google Scholar 

  33. Campiglio M, Tagliabue E, Srinivas U, et al. Colocalization of p185HER2 oncoprotein and integrin alpha 6 beta 4 in Calu-3 lung carcinoma cells. J Cell Biochem 1994;55:409–418.

    Article  CAS  PubMed  Google Scholar 

  34. D Souza B, Taylor Papadimitriou J. Overexpression of ERBB2 in human mammary epithelial cells signals inhibition of the transcription of the E-cadherin gene. Proc Natl Acad Sci USA 1994;91: 7202–7206.

    Article  Google Scholar 

  35. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implication for signal transduction therapy of solid tumors. Am J Pathol 1997;151:1523–1530.

    CAS  PubMed  Google Scholar 

  36. Ravdin PM, Chamnesss GC. The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers — a review. Gene 1995;159:19–27.

    Article  CAS  PubMed  Google Scholar 

  37. Revillion F, Bonneterre J, Peyrat JP. ErbB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer 1998;34:791–808.

    Article  CAS  PubMed  Google Scholar 

  38. Borg A, Tandon AK, Sigurdsson H, et al. Her-2/neu amplification predicts poor survival in nodepositive breast cancer. Cancer Res 1990;50:4322–4327.

    Google Scholar 

  39. Paterson MC, Dietrich KD, Danyluk J, et al. Correlation between c-erb-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res 1991;51:566–567.

    Google Scholar 

  40. Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 2003;101:1257–1262.

    Article  Google Scholar 

  41. Ueda Y, Wang S, Dumont S, Ji JY, Koh Y, Arteaga C. Overexpression of HER2 (ErbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 2004;279:24,505–24,513.

    Article  CAS  PubMed  Google Scholar 

  42. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massagué J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100:8430–8435.

    Article  CAS  PubMed  Google Scholar 

  43. Muraoka RS, Koh Y, Roebuck R, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor betal. Mol Cell Biol 2003;23:8691–8703.

    Article  CAS  PubMed  Google Scholar 

  44. Mulder KC. Role of Ras and Mapks in TGF-beta signaling. Cytokine Growth Factor Rev 2000; 11:23–35.

    Article  CAS  PubMed  Google Scholar 

  45. Calonge MJ, Massagué J. Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-beta antiproliferative responses in colon cancer cells. J Biol Chem 1999;274: 33,637–33,639.

    Article  CAS  PubMed  Google Scholar 

  46. Oft M, Peli J, C Rudaz, H Schwarz, H Beug, E Reichmann. TGF-betal and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996;10: 2462–2477.

    Article  CAS  PubMed  Google Scholar 

  47. Yin JJ, Selander K, Chirgwin JM, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999;103:197–206.

    Article  CAS  PubMed  Google Scholar 

  48. Olayioye M, Badache A, Daly JM, Hynes NE. An essential role for Src kinase in Erb receptor signaling through the MAPK pathway. Exp Cell Res 2001;267:81–87.

    Article  CAS  PubMed  Google Scholar 

  49. Wakefield LM, Piek E, Bottinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2001;6:67–81.

    Article  CAS  PubMed  Google Scholar 

  50. Dowdy SC, Mariani A, Janknecht R. HER2/Neu and TAK1 mediated up-regulation of the transforming growth factor beta inhbitor Smad7 via the ETS protein ER81. J Biol Chem 2003;278:44,377–44,384.

    Article  CAS  PubMed  Google Scholar 

  51. Landis MD, Seachrist DD, Montanez-Wiscovisch ME, Danielpour D, Ker RA Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor — beta in ErbB2/Neu-induced tumors from transgenic mice. Oncogene 2005;24:5173–5190.

    Article  CAS  PubMed  Google Scholar 

  52. Todorović-Raković N. TGF-beta1 could be a missing link in the interplay between ER and HER2 in breast cancer. Med Hypotheses 2005;65:546–551.

    Article  PubMed  Google Scholar 

  53. Nikolić-Vukosavljević D, Todorović-Raković N, Demajo M, et al. Plasma TGF-beta1-related survival of postmenopausal metastatic breast cancer patients. Clin Exp Metastasis. 2004;21:581–585.

    Article  PubMed  Google Scholar 

  54. Ivanović V, Todorović-Raković N, Demajo M, et al. Elevated plasma levels of transforming growth factor — beta1 (TGF-beta1) in patients with advanced breast cancer, association with disease progression, Eur J Cancer 2003;39:454–461.

    Article  PubMed  Google Scholar 

  55. Muraoka S, Dumont N, Ritter CA, Dugger TC, Bramtley DM, Chen J, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration and metastases. J Clin Invest 2002;109:1551–1559.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Todorović-Raković, N. (2008). TGF-β and HER2/ErbB2 and Breast Cancer Progression. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics