Skip to main content

Application of Liquid Chromatography-Mass Spectrometry Analysis in Metabolomics

Reversed-Phase Monolithic Capillary Chromatography and Hydrophilic Chromatography Coupled to Electrospray Ionization-Mass Spectrometry

  • Protocol
Metabolomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 358))

Abstract

Analysis of the entire metabolome as the sum of all detectable components in the sample rather than analysis of each individual metabolite is performed by the metabolomics approaches. To monitor in parallel hundreds or even thousands of metabolites, high-throughput techniques are required that enable screening for relative changes rather than absolute concentrations of compounds. Most analytical techniques for profiling small molecules consist of gas chromatography (GC) or high-performance liquid chromatography (HPLC) coupled to mass spectrometry. HPLC separations are better suited for the analysis of labile and high molecular weight compounds, and for the analysis of nonvolatile polar compounds in their natural form. Although GC- and HPLC-based profiling techniques are not truly quantitative, the compounds detecting and employing the acceptable standards may compare their relative amounts. We have demonstrated that reversed-phase monolithic capillary chromatography and hydrophilic chromatography can be successfully applied for sufficient plant crude extracts separations and metabolomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tolstikov, V. V., Lommen, A., Nakanishi, K., Tanaka, N., and Fiehn O. (2003) Monolithic silica-based capillary reversed phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal. Chem. 75, 6737–6740.

    Article  PubMed  CAS  Google Scholar 

  2. Tolstikov, V. V., Fiehn, O., and Shulaev, V. (2005) The influence of the extraction methodology on global LC-MS and GC-MS metabolite profiling of arabidopsis thaliana leaf tissues. 53rd ASMS Conference, San Antonio, TX, June 5–9, 2005.

    Google Scholar 

  3. Tolstikov, V. V., Lorence, A., Cortes, D. F., et al. (2005) Use of capillary monolithic columns for untargeted metabolite profiling of the mutant lines overexpressing Miox4, the gene involved in L-ascorbic acid biosynthesis in arabidopsis. 28th International Symposium On Capillary Chromatography and Electrophoresis. Las Vegas, NV, May 22–25, 2005.

    Google Scholar 

  4. Tolstikov, V. V. and Fiehn, O. (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301, 298–307.

    Article  PubMed  CAS  Google Scholar 

  5. Tolstikov, V. V., Tanaka, N., and Fiehn O. (2003) Comprehensive metabolome analysis of crude Arabidopsis thaliana leaf extracts by LC/ESI-MSn/UV coupling. 2nd Plant Metabolomics Conference, Potsdam, Germany, April 25–28, 2003.

    Google Scholar 

  6. Tolstikov, V. V., Tanaka, N., and Fiehn, O. (2003) Metabolomics: LC-MS analysis development. Joint BTS/Cereal Chemistry Symposium, Adelaide, Australia, September 8–10, 2003.

    Google Scholar 

  7. Tolstikov, V. V., Zhang, B., Weckwerth, W., and Fiehn O. (2001) Structural investigation of O-glycans derived from plant material by the use of the HILIC HPLC separation and ESI-mass spectrometry. 49th ASMS conference on Mass Spectrometry and Allied Topics, Chicago, IL, May 27–31, 2001.

    Google Scholar 

  8. Tolstikov, V. V., Costisella, B., Weckwerth W., Zhang B., and Fiehn O. (2002) Accurate QTOF and MSn Ion trap measurements require additional NMR data for plant metabolites de-novo identification. 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL, June 2–7, 2002.

    Google Scholar 

  9. Tolstikov, V. V., Tanaka, N., and Fiehn, O. (2003) LC/MS analysis and development for plant metabolomic studies. 2003 LCMS Montreux Symposium. Savannah, GA, October 15–17, 2003.

    Google Scholar 

  10. Tanaka, N., Tolstikov, V., Weckwerth, W., Fiehn, O., and Fukusaki, H., (2003) Micro HPLC for metabolomics. In: Frontier of Metabolomic Research, Springer-Verlag, Tokyo, Japan, pp. 85–100.

    Google Scholar 

  11. Ikegami, T., Kobayashi, H., Kimura, H., Tolstikov, V., Fiehn, O., and Tanaka, N. (2005) HPLC for metabolomics: high efficiency separations utilizing monolithic silica columns. In: Metabolomics. The Frontiers of Systems Biology, Springer Verlag, Tokyo, Japan, pp. 107–126.

    Google Scholar 

  12. Nikiforova, V., Kopka, J., Tolstikov, V., Fiehn, O., Hesse, H., and Hoefgen, R. (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of arabidopsis plants. Plant Physiology 138, 304–318.

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi, H., Kajiwara, W., Inui, Y., et al. (2004) Chromatographic properties of monolithic silica capillary columns for polar and nonpolar compounds in reversed-phase HPLC. Chromatographia 60, S19–S25.

    Article  CAS  Google Scholar 

  14. Ikegami, T., Dicks, E., Kobayashi, H., et al. (2004) How to utilize true performance of monolithic silica columns? J. Sep. Sci. 27, 1292–1302.

    Article  PubMed  CAS  Google Scholar 

  15. Richardson, P. T. and Baker, D. A. (1982) The chemical composition of cucurbit vascular exudates. J. Exp. Bot. 33, 1239–1247.

    Article  CAS  Google Scholar 

  16. Snyder, L. R., Glajch, J. L., and Kirkland, J. J. (1988) Non-ionic samples: reversed-and normal-phase HPLC. In: Practical HPLC Method Development. Wiley, New York, NY, pp. 233–291.

    Google Scholar 

  17. Snyder, L. R., Stadalius, M., and Quarry, M. A. (1983) Gradient elution in reversed-phase HPLC separation of macromolecules. Anal. Chem. 55, 1412A–1430A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Tolstikov, V.V., Fiehn, O., Tanaka, N. (2007). Application of Liquid Chromatography-Mass Spectrometry Analysis in Metabolomics. In: Weckwerth, W. (eds) Metabolomics. Methods in Molecular Biology™, vol 358. Humana Press. https://doi.org/10.1007/978-1-59745-244-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-244-1_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-561-3

  • Online ISBN: 978-1-59745-244-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics