Skip to main content

Monitoring DNA Breaks in Optically Highlighted Chromatin in Living Cells by Laser Scanning Confocal Microscopy

  • Protocol
  • First Online:
Book cover Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

The recognition and repair of DNA lesions occurs within a chromatin environment. Genetically tagging fluorescent proteins to DNA damage response proteins has provided spatial and temporal details concerning the establishment of biochemical subnuclear regions geared toward metabolizing genomic lesions. A specific marker for chromatin regions containing DNA breaks is required to study the initial dynamic structural changes in chromatin when DNA breaks occur. Here we present the experimental protocols used to investigate the dynamics of chromatin structure immediately after the simultaneous photoactivation of PAGFP-tagged core histone H2B and introduction of DNA breaks using UVA laser microirradiation on a laser scanning confocal microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Downs, J. A., Nussenzweig, M. C., and Nussenzweig, A. (2007). Chromatin dynamics and the preservation of genetic information. Nature 447, 951–8.

    Article  PubMed  CAS  Google Scholar 

  2. Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Cell Biol 146, 905–16.

    Article  PubMed  CAS  Google Scholar 

  3. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) J Biol Chem 273, 5858–68.

    Article  PubMed  CAS  Google Scholar 

  4. Smerdon, M. J., Kastan, M. B., and Lieberman, M. W. (1979). Distribution of repair-incorporated nucleotides and nucleosome rearrangement in the chromatin of normal and xeroderma pigmentosum human fibroblasts. Biochemistry 18, 3732–9.

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi, K., and Kaneko, I. (1985). Changes in nuclease sensitivity of mammalian cells after irradiation with 60Co gamma-rays. Int J Radiat Biol Relat Stud Phys Chem Med 48, 389–95.

    Article  PubMed  CAS  Google Scholar 

  6. Houtsmuller, A. B., and Vermeulen, W. (2001). Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem Cell Biol 115, 13–21.

    PubMed  CAS  Google Scholar 

  7. Lukas, C., Falck, J., Bartkova, J., Bartek, J., and Lukas, J. (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5, 255–60.

    Article  PubMed  CAS  Google Scholar 

  8. Bekker-Jensen, S., Lukas, C., Kitagawa, R., Melander, F., Kastan, M. B., Bartek, J., and Lukas, J. (2006). Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173, 195–206.

    Article  PubMed  CAS  Google Scholar 

  9. Essers, J., Houtsmuller, A. B., van Veelen, L., Paulusma, C., Nigg, A. L., Pastink, A., Vermeulen, W., Hoeijmakers, J. H., and Kanaar, R. (2002). Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. Embo J 21, 2030–7.

    Article  PubMed  CAS  Google Scholar 

  10. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H. (2003). Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl, S7–14.

    Google Scholar 

  11. White, J., and Stelzer, E. (1999). Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9, 61–5.

    Article  PubMed  CAS  Google Scholar 

  12. Patterson, G. H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–7.

    Article  PubMed  CAS  Google Scholar 

  13. Patterson, G. H., and Lippincott-Schwartz, J. (2004). Selective photolabeling of proteins using photoactivatable GFP. Methods 32, 445–50.

    Article  PubMed  CAS  Google Scholar 

  14. Cremer, C., Cremer, T., Fukuda, M., and Nakanishi, K. (1980). Detection of laser – UV microirradiation-induced DNA photolesions by immunofluorescent staining. Hum Genet 54, 107–10.

    Article  PubMed  CAS  Google Scholar 

  15. Meldrum, R. A., Botchway, S. W., Wharton, C. W., and Hirst, G. J. (2003). Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Rep 4, 1144–9.

    Article  PubMed  CAS  Google Scholar 

  16. Walter, J., Cremer, T., Miyagawa, K., and Tashiro, S. (2003). A new system for laser-UVA-microirradiation of living cells. J Microsc 209, 71–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Muller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006). Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172, 823–34.

    Article  PubMed  CAS  Google Scholar 

  18. Sutherland, J. C., and Griffin, K. P. (1981). Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiat Res 86, 399–409.

    Article  PubMed  CAS  Google Scholar 

  19. Geierstanger, B. H., and Wemmer, D. E. (1995). Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct 24, 463–93.

    Article  PubMed  Google Scholar 

  20. Limoli, C. L., and Ward, J. F. (1993). A new method for introducing double-strand breaks into cellular DNA. Radiat Res 134, 160–9.

    Article  PubMed  Google Scholar 

  21. Djordjevic, B., and Djordjevic, O. (1965). Chromosomal aberrations in synchronized mammalian cells treated with 5-bromo-deoxyuridine and irradiated by ultra-violet light. Nature 206, 1165–6.

    Article  PubMed  CAS  Google Scholar 

  22. Regan, J. D., Setlow, R. B., and Ley, R. D. (1971). Normal and defective repair of damaged DNA in human cells: a sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc Natl Acad Sci U S A 68, 708–12.

    Google Scholar 

  23. Kimura, H., and Cook, P. R. (2001). Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153, 1341–53.

    Article  PubMed  CAS  Google Scholar 

  24. Siino, J. S., Nazarov, I. B., Svetlova, M. P., Solovjeva, L. V., Adamson, R. H., Zalenskaya, I. A., Yau, P. M., Bradbury, E. M., and Tomilin, N. V. (2002) Photobleaching of GFP-labeled H2AX in chromatin: H2AX has low diffusional mobility in the nucleus. Biochem Biophys Res Commun 297, 1318–23.

    Article  PubMed  CAS  Google Scholar 

  25. Fried, J., Doblin, J., Takamoto, S., Perez, A., Hansen, H., and Clarkson, B. (1982) Effects of Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells. Cytometry 3, 42–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank George Patterson (NICHD/NIH) for the generous gift of the PAGFP construct and helpful technical assistance. We are grateful to Tom Misteli (NCI/NIH) for providing the H2B-GFP construct.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kruhlak, M.J., Celeste, A., Nussenzweig, A. (2009). Monitoring DNA Breaks in Optically Highlighted Chromatin in Living Cells by Laser Scanning Confocal Microscopy. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics