Skip to main content

Genomewide Identification of Protein Binding Locations Using Chromatin Immunoprecipitation Coupled with Microarray

  • Protocol
Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 439))

Abstract

Interactions between cis-acting elements and proteins play a key role in transcriptional regulation of all known organisms. To better understand these interactions, researchers developed a method that couples chromatin immunoprecipitation with microarrays (also known as ChIP-chip), which is capable of providing a whole-genome map of protein-DNA interactions. This versatile and high-throughput strategy is initiated by formaldehyde-mediated cross-linking of DNA and proteins, followed by cell lysis, DNA fragmentation, and immunopurification. The immunoprecipitated DNA fragments are then purified from the proteins by reverse-cross-linking followed by amplification, labeling, and hybridization to a whole-genome tiling microarray against a reference sample. The enriched signals obtained from the microarray then are normalized by the reference sample and used to generate the whole-genome map of protein-DNA interactions. The protocol described here has been used for discovering the genomewide distribution of RNA polymerase and several transcription factors of Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  CAS  PubMed  Google Scholar 

  2. 2. Ren B, Robert R, Wyrick JJ, Aparicio O, Jennings EG, Simon I. Zeitlinger J, Schreiber J, Hannett,N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide resolution and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  3. 3. Herring CD, Raffaelle M, Allen TE, Kanin EI, Landick R, Ansari AZ, Palsson BO (2005) Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarray. J Bacteriol 187:6166–6174

    Article  CAS  PubMed  Google Scholar 

  4. 4. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne J, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  5. 5. Wardle FC, Odom DT, Bell GW, Yuan B, Danford TW, Wiellette EL, Herbolsheimer E, Sive HL, Young RA, Smith JC (2006) Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biol 7:R71

    Article  PubMed  Google Scholar 

  6. 6. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  7. 7. Orian A, Steensel BV, Delrow J, Bussemaker HJ, Li L, Sawado T, Williams E, Loo LWM, Cowley SM, Yost C, Pierce S, Edgar BA, Parkhurst,SM, Eisenman RN (2003) Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Chua YL, Mott E, Brown AP, MacLean D, Gray JC (2004) Microarray analysis of chromatin-immunoprecipitated DNA identifies specific regions of tobacco genes associated with acetylated histones. Plant J 37:789–800

    Article  CAS  PubMed  Google Scholar 

  9. 9. Grainger DC, Hurd D, Harrison M, Holdstock J, Busby JW (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 102:17693–17698

    Article  CAS  PubMed  Google Scholar 

  10. 10. Carter NP, Vetrie D (2004) Applications of genomic microarrays to explore human chromosome structure and function. Hum Mol Genet 13:R297–R302

    Article  CAS  PubMed  Google Scholar 

  11. 11. MacAlpine DM, Bell SP (2005) A genomic view of eukaryotic DNA replication. Chromosome Res 13:309–326

    Article  CAS  PubMed  Google Scholar 

  12. 12. Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, Begley TJ, Samson LD, Ideker T (2006) A systems approach to mapping DNA damage response pathways. Science 312:1054–1059

    Article  CAS  PubMed  Google Scholar 

  13. Wade JT, Roa DC, Grainger DC, Hurd D, Busby JW, Struhl K, Nudler E (2006) Extensive functional overlap between σ factors in Escherichia coli. Nat Struct Mol Biol. doi: 10.1038/ nsmb1130

    Google Scholar 

  14. 14. Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  CAS  PubMed  Google Scholar 

  15. 15. Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102

    Article  PubMed  Google Scholar 

  16. 16. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protocols 1:729–748

    Article  CAS  Google Scholar 

  17. 17. Buck MJ, Lieb JD (2004) ChIP-chip: Consideration for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    Article  CAS  PubMed  Google Scholar 

  18. 18. Negre N, Lavrov S, Hennetin J, Bellis M, Cavalli G (2006) Mapping the distribution of chromatin proteins by ChIP on Chip. Methods Enzymol 410:316–341

    Article  CAS  PubMed  Google Scholar 

  19. 19. Hecht A, Grunstein M (1999) Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol 304:399–414

    Article  CAS  PubMed  Google Scholar 

  20. 20. Ren B,d Dynlacht BD (2004) Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol 376:304–315

    Article  CAS  PubMed  Google Scholar 

  21. 21. Cho BK, Knight EM, Palsson BØ (2006) PCR-based tandem epitope tagging system for Escherichia coli genome engineering. Biotechniques 40:67–72

    Article  CAS  PubMed  Google Scholar 

  22. 22. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  23. 23. Buck MJ, Nobel AB, Lieb JD (2005) ChIPOTle: A user-friendly tool for the analysis of ChIP-chip data. Genome Biol 6:R97

    Article  PubMed  Google Scholar 

  24. 24. Bieda M, Xu X, Singer MA, Green R, Farnham PJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16:595–605

    Article  CAS  PubMed  Google Scholar 

  25. 25. Ji H, Wong WH (2005) TileMap: Create chromosomal map of tiling array hybridizations. Bioinformatics 21:3629–3636

    Article  CAS  PubMed  Google Scholar 

  26. 26. Qi Y, Rolfe A, MacIsaac KD, Gerber GK, Pokholok D, Zeitlinger J, Danford T, Dowell RD, Fraenkel E, Jaakkola TS, Young RA, Gifford DK (2006) High-resolution computational models of genome binding events. Nat Biotechnol 24:963–970

    Article  CAS  PubMed  Google Scholar 

  27. 27. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS (2006) Modelbased analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci USA 103:12457–12462

    Article  CAS  PubMed  Google Scholar 

  28. 28. Gibbons FD, Proft M, Struhl K, Roth FP (2005) Chipper: Discovering transcription-factor targets from chromatin immunoprecipitation microarray using variance stabilization. Genome Biol 6:R96

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The protocol described here was based on previous work by many other research groups in this field. The pioneers in this field are Dr. Young's group at MIT, Dr. Lieb's group at the University of North Carolina, Dr. Grunstein's group at Yale University, Dr. Ren's group at UCSD, and others. We thank anyone whose work was not referenced in here. This work is supported by NIH research grant no. GM62791.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cho, BK., Knight, E.M., Palsson, B.Ø. (2008). Genomewide Identification of Protein Binding Locations Using Chromatin Immunoprecipitation Coupled with Microarray. In: Starkey, M., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 439. Humana Press. https://doi.org/10.1007/978-1-59745-188-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-188-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-871-3

  • Online ISBN: 978-1-59745-188-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics