Skip to main content

Platelet Signal-Dependent Protein Synthesis

  • Chapter
Platelet Function

Abstract

Our understanding of platelet functions has been in evolution since their discovery. Blood platelets were initially observed in the middle of the 19th century by many investigators including Zimmerman in 1860, Schultze in 1865, Osler in 1874, and Hayem in 1878 (1). Studies by Bizzozero (2,3) were the first to recognize the adhesive qualities of platelets, their participation in thrombosis and leukocyte recruitment, and their role in blood coagulation. These monumental findings, which have withstood the test of time, have expanded at a remarkable rate and continue to be the primary focus of investigative research in the platelet arena (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wintrobe MM. Blood Platelets and coagulation. In: Wintrobe MM, ed. Clinical Hematology. Lea & Febiger, Philadelphia, 1946, pp. 187–238.

    Google Scholar 

  2. Bizzozero G. Su di un nuovo elemento morfologico del sangue dei mammiferi e della sua importanza nella trombosi e nella coagulazione. Osservatore 1881;17:785–787.

    Google Scholar 

  3. Bizzozero G. Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Arch Pathol Anat Physiol 1882;90:261–332.

    Google Scholar 

  4. Coller BS. A brief and highly selective history of ideas about platelets in health and disease. In: Michelson AD, ed. Platelets. Academic Press, San Diego, 2002, pp. xxix–xliii.

    Google Scholar 

  5. Zucker MB, Nachmias VT. Platelet activation. Arteriosclerosis 1985;5:2–18.

    PubMed  CAS  Google Scholar 

  6. McNicol A. Platelet preparation and estimation of functional responses. In: Watson SP, ed. Platelets: A Practical Approach. IRL Press at Oxford University Press, Oxford, 1996, pp. 1–26.

    Google Scholar 

  7. Clemetson KJ. Platelet activation: signal transduction via membrane receptors. Thromb Haemost 1995;74:111–116.

    PubMed  CAS  Google Scholar 

  8. Levy-Toledano S. Platelet signal transduction pathways: could we organize them into a ‘hierarchy’? Haemostasis 1999;29:4–15.

    PubMed  CAS  Google Scholar 

  9. Parise LV. Integrin alpha(IIb)beta(3) signaling in platelet adhesion and aggregation. Curr Opin Cell Biol 1999;11:597–601.

    PubMed  CAS  Google Scholar 

  10. Bouchard BA, Butenas S, Mann KG, Tracy PB. Interactions between platelets and the coagulation system. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 229–253.

    Google Scholar 

  11. Michelson AD. The clinical approach to disorders of platelet number and function. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 541–545.

    Google Scholar 

  12. Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002;8:1227–1234.

    PubMed  CAS  Google Scholar 

  13. Goldschmidt PJ, Lopes N, Crawford LE. Atherosclerosis and coronary heart disease. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 375–398.

    Google Scholar 

  14. Karpatkin S. Tumor growth and metastasis. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 491–502.

    Google Scholar 

  15. Tschoepe D, Menart-Houtermans, B. Diabetes mellitus. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 435–445.

    Google Scholar 

  16. Gordon JLM. Blood platelets as multifunctional cells. In: Gordon JL, ed. Platelets in Biology and Pathology: Elsevier/North-Holland Biomedical, Amsterdam, 1976, pp. 3–22.

    Google Scholar 

  17. Herd CM, Page CP. Pulmonary immune cells in health and disease: platelets. Eur Respir J 1994;7:1145–1160.

    PubMed  CAS  Google Scholar 

  18. Klinger MH. Platelets and inflammation. Anat Embryol (Berl) 1997;196:1–11.

    CAS  Google Scholar 

  19. Mannaioni PF, Di Bello MG, Masini E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res 1997;46:4–18.

    PubMed  CAS  Google Scholar 

  20. Yeaman M, Bayer, AS. Antimicrobial host defense. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 469–490.

    Google Scholar 

  21. Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol 2002;3:425–430.

    PubMed  CAS  Google Scholar 

  22. Russwurm S, Vickers J, Meier-Hellmann A, et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 2002;17:263–268.

    PubMed  Google Scholar 

  23. Vincent JL, Yagushi A, Pradier O. Platelet function in sepsis. Crit Care Med 2002;30:S313–S317.

    PubMed  CAS  Google Scholar 

  24. Endresen GK, Forre O. Human platelets in synovial fluid. A focus on the effects of growth factors on the inflammatory responses in rheumatoid arthritis. Clin Exp Rheumatol 1992;10:181–187.

    PubMed  CAS  Google Scholar 

  25. Hasleton PS, Roberts TE. Adult respiratory distress syndrome—an update. Histopathology 1999;34:285–294.

    PubMed  CAS  Google Scholar 

  26. Reed GL. Platelet secretion. In: Michelson AD, ed. Platelets. Elsevier Science, San Diego, 2002, pp. 181–195.

    Google Scholar 

  27. Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets 2001;12:261–273.

    PubMed  CAS  Google Scholar 

  28. McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001;86:746–756.

    PubMed  CAS  Google Scholar 

  29. Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 1996;97:1525–1534.

    PubMed  CAS  Google Scholar 

  30. McBane RD 2nd, Ford MA, Karnicki K, Stewart M, Owen WG. Fibrinogen, fibrin and crosslinking in aging arterial thrombi. Thromb Haemost 2000;84:83–87.

    PubMed  CAS  Google Scholar 

  31. Galt SW, Lindemann S, Allen L, et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res 2002;90:1093–1099.

    PubMed  CAS  Google Scholar 

  32. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997;386:616–619.

    PubMed  CAS  Google Scholar 

  33. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 1992;176:587–592.

    PubMed  CAS  Google Scholar 

  34. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990;347:669–671.

    PubMed  CAS  Google Scholar 

  35. Schober A, Manka D, von Hundelshausen P, et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002;106:1523–1529.

    PubMed  CAS  Google Scholar 

  36. von Hundelshausen P, Weber KS, Huo Y, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001;103:1772–1777.

    Google Scholar 

  37. Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 1995;269:1727–1730.

    PubMed  CAS  Google Scholar 

  38. Weyrich AS, Prescott SM, Zimmerman GA. Platelets, endothelial cells, inflammatory chemokines, and restenosis: complex signaling in the vascular play book. Circulation 2002;106:1433–1435.

    PubMed  Google Scholar 

  39. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–594.

    PubMed  CAS  Google Scholar 

  40. McEver RP. Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells 1990;16:73–80.

    PubMed  CAS  Google Scholar 

  41. McEver RP. Selectins. Curr Opin Immunol 1994;6:75–84.

    PubMed  CAS  Google Scholar 

  42. Topol EJ. Aspirin with bypass surgery—from taboo to new standard of care. N Engl J Med 2002;347:1359–1360.

    PubMed  Google Scholar 

  43. FitzGerald GA, Fitzgerald DJ, Lawson JA, Murray R. Thromboxane biosynthesis and antagonism in humans. Adv Prostaglandin Thromboxane Leukot Res 1987;17A:199–203.

    PubMed  CAS  Google Scholar 

  44. Fitzgerald DJ, Wright F, FitzGerald GA. Increased thromboxane biosynthesis during coronary thrombolysis. Evidence that platelet activation and thromboxane A2 modulate the response to tissue-type plasminogen activator in vivo. Circ Res 1989;65:83–94.

    PubMed  CAS  Google Scholar 

  45. FitzGerald GA, Murray R, Moran N, et al. Mechanisms of eicosanoid action. Adv Prostaglandin Thromboxane Leukot Res 1991;21B:577–581.

    PubMed  CAS  Google Scholar 

  46. Fitzgerald GA, Catella F, Oates JA. Eicosanoid biosynthesis in human cardiovascular disease. Hum Pathol 1987;18:248–252.

    PubMed  CAS  Google Scholar 

  47. Patrono C. Aspirin and human platelets: from clinical trials to acetylation of cyclooxygenase and back. Trends Pharmacol Sci 1989;10:453–458.

    PubMed  CAS  Google Scholar 

  48. Pratico D, Tillmann C, Zhang ZB, Li H, FitzGerald GA. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci USA 2001;98:3358–3363.

    PubMed  CAS  Google Scholar 

  49. Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Pratico D. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2002;106:1282–1287.

    PubMed  CAS  Google Scholar 

  50. Ostrovsky L, King AJ, Bond S, et al. A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood 1998;91:3028–3036.

    PubMed  CAS  Google Scholar 

  51. Zimmerman GA, Elstad MR, Lorant DE, et al. Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv Exp Med Biol 1996;416:297–304.

    PubMed  CAS  Google Scholar 

  52. Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med 2002;30:S294–S301.

    PubMed  CAS  Google Scholar 

  53. Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation [see comments]. J Clin Invest 1995;95:2297–2303.

    PubMed  CAS  Google Scholar 

  54. Lehr HA, Weyrich AS, Saetzler RK, et al. Vitamin C blocks inflammatory platelet-activating factor mimetics created by cigarette smoking [see comments]. J Clin Invest 1997;99:2358–2364.

    PubMed  CAS  Google Scholar 

  55. Gutensohn K, Geidel K, Brockmann M, et al. Binding of activated platelets to WBCs in vivo after transfusion. Transfusion 2002;42:1373–1380.

    PubMed  CAS  Google Scholar 

  56. Furman MI, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 2001;38:1002–1006.

    PubMed  CAS  Google Scholar 

  57. Galt SW, Lindemann S, Medd D, et al. Differential regulation of matrix metalloproteinase-9 by monocytes adherent to collagen and platelets. Circ Res 2001;89:509–516.

    PubMed  CAS  Google Scholar 

  58. Smyth SS, Reis ED, Zhang W, Fallon JT, Gordon RE, Coller BS. Beta(3)-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury: correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation 2001;103:2501–2507.

    PubMed  CAS  Google Scholar 

  59. Massberg S, Brand K, Gruner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002;196:887–896.

    PubMed  CAS  Google Scholar 

  60. Kim YJ, Borsig L, Han HL, Varki NM, Varki A. Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol 1999;155:461–472.

    PubMed  CAS  Google Scholar 

  61. Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 1998;95:9325–9330.

    PubMed  CAS  Google Scholar 

  62. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L-and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 2002;99:2193–2198.

    PubMed  CAS  Google Scholar 

  63. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001;98:3352–3357.

    PubMed  CAS  Google Scholar 

  64. Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A. X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res 1998;58:5216–5220.

    PubMed  CAS  Google Scholar 

  65. Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997;95:2387–2394.

    PubMed  CAS  Google Scholar 

  66. Hilf N, Singh-Jasuja H, Schwarzmaier P, Gouttefangeas C, Rammensee HG, Schild H. Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood 2002;99:3676–3682.

    PubMed  CAS  Google Scholar 

  67. Lang D, Dohle F, Terstesse M, et al. Down-regulation of monocyte apoptosis by phagocytosis of platelets: involvement of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway. J Immunol 2002;168:6152–6158.

    PubMed  CAS  Google Scholar 

  68. Morgenstern E. Ultracytochemistry of blood platelets. In: Graumann W, Lojda, A, Pearse, AGE, Schiebler, TH, eds. Progress in Histochemistry and Cytochemistry, vol. 12. Gustav Fischer, New York, 1980, pp. 1–86.

    Google Scholar 

  69. Packham MA, Guccione MA, Kinlough-Rathbone RL, Mustard JF. Platelet sialic acid and platelet survival after aggregation by ADP. Blood 1980;56:876–880.

    PubMed  CAS  Google Scholar 

  70. Kinlough-Rathbone RL, Packham MA, Guccione MA, Richardson M, Harfenist EJ, Mustard JF. Characteristics of thrombin-degranulated human platelets: development of a method that does not use proteolytic enzymes for deaggregation. Thromb Haemost 1991;65:403–410.

    PubMed  CAS  Google Scholar 

  71. Born GV. Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J Physiol 1970;209:487–511.

    PubMed  CAS  Google Scholar 

  72. Lindemann S, Tolley ND, Eyre JR, Kraiss LW, Mahoney TM, Weyrich AS. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control. J Biol Chem 2001;276:33947–33951.

    PubMed  CAS  Google Scholar 

  73. Seabold JE, Schroder E, Conrad GR, et al. Indium-111 platelet scintigraphy and two-dimensional echocardiography for detection of left ventricular thrombus: influence of clot size and age. J Am Coll Cardiol 1987;9:1057–1066.

    Article  PubMed  CAS  Google Scholar 

  74. Pabla R, Weyrich AS, Dixon DA, et al. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol 1999;144:175–184.

    PubMed  CAS  Google Scholar 

  75. Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA 1998;95:5556–5561.

    PubMed  CAS  Google Scholar 

  76. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1 beta synthesis. J Cell Biol 2001;154:485–490.

    PubMed  CAS  Google Scholar 

  77. Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci USA 2001;98:10284–10289.

    PubMed  CAS  Google Scholar 

  78. Booyse FM, Rafelson ME Jr. Stable messenger RNA in the synthesis of contractile protein in human platelets. Biochim Biophys Acta 1967;145:188–190.

    PubMed  CAS  Google Scholar 

  79. Booyse F, Rafelson ME, Jr. In vitro incorporation of amino-acids into the contractile protein of human blood platelets. Nature 1967;215:283–284.

    PubMed  CAS  Google Scholar 

  80. Booyse FM, Rafelson ME Jr. Studies on human platelets. I. Synthesis of platelet protein in a cell-free system. Biochim Biophys Acta 1968;166:689–697.

    PubMed  CAS  Google Scholar 

  81. Booyse FM, Hoveke TP, Rafelson ME. Studies on human platelets. II. Protein synthetic activity of various platelet populations. Biochim Biophys Acta 1968;157:660–663.

    PubMed  CAS  Google Scholar 

  82. Booyse FM, Rafelson ME. Protein synthesis and platelet function. In: Johnson SA, ed. Dynamics of Thrombus Formation and Dissolution. JB Lippincott, Philadelphia, 1969, p. 149.

    Google Scholar 

  83. Booyse FM, Zschocke D, Hoveke TP, Rafelson ME. Studies on human platelets. IV. Protein synthesis in maturing human platelets. Thromb Diath Haemorrh 1971;26:167–176.

    PubMed  CAS  Google Scholar 

  84. Kieffer N, Guichard J, Farcet JP, Vainchenker W, Breton-Gorius J. Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem 1987;164:189–195.

    PubMed  CAS  Google Scholar 

  85. Rosenwald IB, Pechet L, Han A, et al. Expression of translation initiation factors elF-4E and elF-2alpha and a potential physiologic role of continuous protein synthesis in human platelets. Thromb Haemost 2001;85:142–151.

    PubMed  CAS  Google Scholar 

  86. Plow EF. Extracellular factors influencing the in vitro protein synthesis of platelets. Thromb Haemost 1979;42:666–678.

    PubMed  CAS  Google Scholar 

  87. Schneider W, Dries R, Scheurlen PG. [New findings on nucleic acid synthesis in human blood platelets]. Verh Dtsch Ges Inn Med 1972;78:696–698.

    PubMed  CAS  Google Scholar 

  88. Schneider W, Dries R, Kulenkampff G. Studies on the protein and nucleic acid synthesis of normal human blood platelets. Acta Univ Carol Med Monogr 1972;53:113–137.

    PubMed  CAS  Google Scholar 

  89. Soslau G. De novo synthesis of DNA in human platelets. Arch Biochem Biophys 1983;226:252–256.

    PubMed  CAS  Google Scholar 

  90. Karpatkin S. Heterogeneity of human platelets. I. Metabolic and kinetic evidence suggestive of young and old platelets. J Clin Invest 1969;48:1073–1082.

    PubMed  CAS  Google Scholar 

  91. Kienast J, Schmitz G. Flow cytometric analysis of thiazole orange uptake by platelets: a diagnostic aid in the evaluation of thrombocytopenic disorders. Blood 1990;75:116–121.

    PubMed  CAS  Google Scholar 

  92. Steiner M, Baldini M. Protein synthesis in aging blood platelets. Blood 1969;33:628–633.

    PubMed  CAS  Google Scholar 

  93. Belloc F, Hourdille P, Boisseau MR, Bernard P. Protein synthesis in human platelets correlation with platelet size. Nouv Rev Fr Hematol 1982;24:369–373.

    PubMed  CAS  Google Scholar 

  94. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 2002;14:14.

    Google Scholar 

  95. Power CA, Clemetson JM, Clemetson KJ, Wells TN. Chemokine and chemokine receptor mRNA expression in human platelets. Cytokine 1995;7:479–482.

    PubMed  CAS  Google Scholar 

  96. Roth GJ, Hickey MJ, Chung DW, Hickstein DD. Circulating human blood platelets retain appreciable amounts of poly (A)+ RNA. Biochem Biophys Res Commun 1989;160:705–710.

    PubMed  CAS  Google Scholar 

  97. Soslau G, Morgan DA, Jaffe JS, Brodsky I, Wang Y. Cytokine mRNA expression in human platelets and a megakaryocytic cell line and cytokine modulation of platelet function. Cytokine 1997;9:405–411.

    PubMed  CAS  Google Scholar 

  98. Santoso S, Kalb R, Kiefel V, Mueller-Eckhardt C. The presence of messenger RNA for HLA class I in human platelets and its capability for protein biosynthesis. Br J Haematol 1993;84:451–456.

    PubMed  CAS  Google Scholar 

  99. Sottile J, Mosher DF, Fullenweider J, George JN. Human platelets contain mRNA transcripts for platelet factor 4 and actin. Thromb Haemost 1989;62:1100–1102.

    PubMed  CAS  Google Scholar 

  100. Newman PJ, Gorski J, White GC 2nd, Gidwitz S, Cretney CJ, Aster RH. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest 1988;82:739–743.

    PubMed  CAS  Google Scholar 

  101. Konkle BA, Schick PK, He X, Liu RJ, Mazur EM. Plasminogen activator inhibitor-1 mRNA is expressed in platelets and megakaryocytes and the megakaryoblastic cell line CHRF-288. Arterioscler Thromb 1993;13:669–674.

    PubMed  CAS  Google Scholar 

  102. Ausubel F, Brent R, Kingston RE, et al. Preparation and analysis of RNA. In: Chanda V, ed. Current Protocols in Molecular Biology, vol. 1: John Wiley, New York, 1987–1998, pp. 4.5.1–4.5.2.

    Google Scholar 

  103. Ts’ao CH. Rough endoplasmic reticulum and ribosomes in blood platelets. Scand J Haematol 1971;8:134–140.

    Article  CAS  Google Scholar 

  104. Jeno P, Ballou LM, Novak-Hofer I, Thomas G. Identification and characterization of a mitogen-activated S6 kinase. Proc Natl Acad Sci USA 1988;85:406–410.

    PubMed  CAS  Google Scholar 

  105. Nguyen YH, Mills AA, Stanbridge EJ. Assembly of the QM protein onto the 60S ribosomal subunit occurs in the cytoplasm. J Cell Biochem 1998;68:281–285.

    PubMed  CAS  Google Scholar 

  106. Papkoff J, Chen RH, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994;14:463–472.

    PubMed  CAS  Google Scholar 

  107. Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999;13:1422–1437.

    PubMed  CAS  Google Scholar 

  108. Gingras A-C, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999;68:913–963.

    PubMed  CAS  Google Scholar 

  109. Hinnebusch A. Initiator methionyl-tRNA binding to ribosomes. In: Sonenberg N, Hershey JWB, Mathews MB, eds. Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000, pp. 185–243.

    Google Scholar 

  110. Djaffar I, Vilette D, Bray PF, Rosa JP. Quantitative isolation of RNA from human platelets. Thromb Res 1991;62:127–135.

    PubMed  CAS  Google Scholar 

  111. Kochetov AV, Ischenko IV, Vorobiev DG, et al. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett 1998;440:351–355.

    PubMed  CAS  Google Scholar 

  112. Bertagnolli ME, Hudson LA, Stetsenko GY. Selective association of the tyrosine kinases Src, Fyn, and Lyn with integrin-rich actin cytoskeletons of activated, nonaggregated platelets. Biochem Biophys Res Commun 1999;260:790–798.

    PubMed  CAS  Google Scholar 

  113. Kralisz U, Cierniewski CS. Activity of pp60c-src and association of pp60c-src, pp54/58lyn, pp60fyn, and pp72syk with the cytoskeleton in platelets activated by collagen. IUBMB Life 2000;49:33–42.

    PubMed  CAS  Google Scholar 

  114. Weyrich AS, Lindemann S, Tolley ND, et al. Translational control in platelets: signaling through mTOR regulates clot retraction. In: First Conference on Arteriosclerosis, Thrombosis, and Vascular Biology, Denver, Colorado, May 20–22, 2000.

    Google Scholar 

  115. Lenardo M, Siebenlist U. Bcl-3-mediated nuclear regulation of the NF-kappa B trans-activating factor. Immunol Today 1994;15:145–147.

    PubMed  CAS  Google Scholar 

  116. Liu F, Morris S, Epps J, Carroll R. Demonstration of an activation regulated NF-kappaB/I-kappaBalpha complex in human platelets. Thromb Res 2002;106:199.

    PubMed  CAS  Google Scholar 

  117. Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 2000;148:75–85.

    PubMed  CAS  Google Scholar 

  118. Hawrylowicz CM, Santoro SA, Platt FM, Unanue ER. Activated platelets express IL-1 activity. J Immunol 1989;143:4015–4018.

    PubMed  CAS  Google Scholar 

  119. Hawrylowicz CM, Howells GL, Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 1991;174:785–790.

    PubMed  CAS  Google Scholar 

  120. Kaplanski G, Porat R, Aiura K, Erban JK, Gelfand JA, Dinarello CA. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood 1993;81:2492–2495.

    PubMed  CAS  Google Scholar 

  121. Loppnow H, Bil R, Hirt S, et al. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 1998;91:134–141.

    PubMed  CAS  Google Scholar 

  122. Kaspar RL, Gehrke L. Peripheral blood mononuclear cells stimulated with C5a or lipopolysaccharide to synthesize equivalent levels of IL-1 beta mRNA show unequal IL-1 beta protein accumulation but similar polyribosome profiles. J Immunol 1994;153:277–286.

    PubMed  CAS  Google Scholar 

  123. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994;372:739–746.

    PubMed  CAS  Google Scholar 

  124. Clark IE, Wyckoff D, Gavis ER. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr Biol 2000;10:1311–1314.

    PubMed  CAS  Google Scholar 

  125. Bessler H, Agam G, Djaldetti M. Increased protein synthesis by human platelets during phagocytosis of latex particles in vitro. Thromb Haemost 1976;35:350–357.

    PubMed  CAS  Google Scholar 

  126. Plenchette S, Moutet M, Benguella M, et al. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion. Leukemia 2001;15:1572–1581.

    PubMed  CAS  Google Scholar 

  127. Brown SB, Clarke MC, Magowan L, Sanderson H, Savill J. Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J Biol Chem 2000;275:5987–5996.

    PubMed  CAS  Google Scholar 

  128. Chen LY, Mehta JL. Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol 1996;27:154–158.

    PubMed  CAS  Google Scholar 

  129. Mehta JL, Chen LY, Kone BC, Mehta P, Turner P. Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 1995;125:370–377.

    PubMed  CAS  Google Scholar 

  130. Coller BS. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest 1997;100:S57–S60.

    PubMed  CAS  Google Scholar 

  131. Coller BS. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest 1997;99:1467–1471.

    Article  PubMed  CAS  Google Scholar 

  132. Fitzgerald DJ. Vascular biology of thrombosis: the role of platelet-vessel wall adhesion. Neurology 2001;57:S1–S4.

    PubMed  CAS  Google Scholar 

  133. Chen YP, O’Toole TE, Leong L, Liu BQ, Diaz-Gonzalez F, Ginsberg MH. Beta 3 integrin-mediated fibrin clot retraction by nucleated cells: differing behavior of alpha IIb beta 3 and alpha v beta 3. Blood 1995;86:2606–2615.

    PubMed  CAS  Google Scholar 

  134. Chicurel ME, Singer RH, Meyer CJ, Ingber DE. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 1998;392:730–733.

    PubMed  CAS  Google Scholar 

  135. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int 2001;59:3–16.

    PubMed  CAS  Google Scholar 

  136. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996;14:483–510.

    PubMed  CAS  Google Scholar 

  137. Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell 1996;86:517–520.

    PubMed  CAS  Google Scholar 

  138. Curfman GD. Sirolimus-eluting coronary stents. N Engl J Med 2002;346:1770–1771.

    PubMed  Google Scholar 

  139. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 2001;104:1188–1193.

    PubMed  CAS  Google Scholar 

  140. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773–1780.

    PubMed  CAS  Google Scholar 

  141. Pinedo HM, Verheul HM, D’Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet 1998;352:1775–1777.

    PubMed  CAS  Google Scholar 

  142. Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci USA 2002;99:7634–7639.

    PubMed  CAS  Google Scholar 

  143. Corash L, Shafer B. Use of asplenic rabbits to demonstrate that platelet age and density are related. Blood 1982;60:166–1671.

    PubMed  CAS  Google Scholar 

  144. Rao AK, Gabbeta J. Congenital disorders of platelet signal transduction. Arterioscler Thromb Vasc Biol 2000;20:285–289.

    PubMed  CAS  Google Scholar 

  145. Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ. The mechanism of apoptosis in human platelets during storage. Transfusion 2000;40:1320–1329.

    PubMed  CAS  Google Scholar 

  146. Pereira J, Soto M, Palomo I, et al. Platelet aging in vivo is associated with activation of apoptotic pathways: studies in a model of suppressed thrombopoiesis in dogs. Thromb Haemost 2002;87:905–909.

    PubMed  CAS  Google Scholar 

  147. Seghatchian J, Krailadsiri P. Platelet storage lesion and apoptosis: are they related? Transfus Apheresis Sci 2001;24:103–105.

    CAS  Google Scholar 

  148. Dixon DA, Tolley ND, Zimmerman GA. Convenient and rapid ribonuclease protection assay for use with primary cell cultures. Biotechniques 2001;31:992–993.

    PubMed  CAS  Google Scholar 

  149. Wintrobe MM. Blood platelets and coagulation. In: Wintrobe MM, ed. Clinical Hematology. Lea & Febiger, Philadelphia, 1946, pp. 187–216.

    Google Scholar 

  150. Miyamoto S, Qin J, Safer B. Detection of early gene expression changes during activation of human primary lymphocytes by in vitro synthesis of proteins from polysome-associated mRNAs. Protein Sci 2001;10:423–433.

    PubMed  CAS  Google Scholar 

  151. Wolin SL, Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 1988;7:3559–3569.

    PubMed  CAS  Google Scholar 

  152. Tenenbaum SA, Carson CC, Lager PJ, Keene JD. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 2000;97:14085–14090.

    PubMed  CAS  Google Scholar 

  153. Pan J, McEver RP. Regulation of the human P-selectin promoter by Bcl-3 and specific homodimeric members of the NF-kappa B/Rel family. J Biol Chem 1995;270:23077–23083.

    PubMed  CAS  Google Scholar 

  154. Ohno H, Takimoto G, McKeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 1990;60:991–997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lindemann, S., McIntyre, T.M., Prescott, S.M., Zimmerman, G.A., Weyrich, A.S. (2005). Platelet Signal-Dependent Protein Synthesis. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics