Skip to main content

In Vivo Intrinsic Optical Signal Imaging of Neocortical Epilepsy

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 737 Accesses

Abstract

Intrinsic optical signal (IOS) imaging is a technique for measuring changes in blood flow, metabolism, and cellular swelling associated with neuronal activity. The combined spatial and temporal resolution, in addition to the ability to sample large areas of cortex simultaneously, make it a powerful technique for brain mapping. IOS has only recently been applied systematically to the study of epilepsy. This chapter will explore the utility and feasibility of mapping interictal spikes, ictal onsets, offsets, and horizontal propagation using IOS imaging in acute and chronic animal models of epilepsy. The implementation of IOS imaging in the operating room during neurosurgical procedures will be discussed as well as technical challenges that currently restrict this translational work to a very few centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill DK, Keynes RD. Opacity changes in stimulated nerve. J Physiol 1949;108:278–281.

    PubMed  CAS  Google Scholar 

  2. Chance BC, P., Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science 1962; 137:499–508.

    Article  PubMed  CAS  Google Scholar 

  3. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198:1264–1266.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen LB, Keynes RD. Changes in light scattering associated with the action potential in crab nerves. J Physiol 1971;212:259–275.

    PubMed  CAS  Google Scholar 

  5. Cohen L. Optical approaches to neuronal function. In: Hoffman JF, De Weer P, eds. Annual Review of Physiology. Palo Alto, CA: Annual Review Inc.; 1989:487–582.

    Google Scholar 

  6. Grinvald A, Lieke EE, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.

    Article  PubMed  CAS  Google Scholar 

  7. Bonhoeffer T, Grinvald A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 1991;353:429–431.

    Article  PubMed  CAS  Google Scholar 

  8. Bonhoeffer T, Grinvald A. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization. J Neurosci 1993;13:4157–4180.

    PubMed  CAS  Google Scholar 

  9. Rubin BD, Katz LC. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 1999;23:499–511.

    Article  PubMed  CAS  Google Scholar 

  10. Mrsic-Flogel T, Hübener M, Bonhoeffer T. Brain mapping: new wave optical imaging. Curr Biol 2003;13.:R778–R780.

    Article  PubMed  CAS  Google Scholar 

  11. Bonhoeffer T, Grinvald A. Optical imaging based on intrinsic signals. The methodology. In: Toga AW, Mazziota JC, eds. Brain Mapping The Methods. San Diego: Academic Press; 1996:55–99.

    Google Scholar 

  12. Holthoff K, Witte OW. Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci 1996;16:2740–2749.

    PubMed  CAS  Google Scholar 

  13. Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci 1990;87:6082–6086.

    Article  PubMed  CAS  Google Scholar 

  14. Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 1996;272:551–554.

    Article  PubMed  CAS  Google Scholar 

  15. Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 1999;286:1555–1558.

    Article  PubMed  CAS  Google Scholar 

  16. Pouratian N, Sicotte N, Rex D, et al. Spatial/temporal correlation of BOLD and optical intrinsic signals in human. Magn Res Med 2003;47:766–776.

    Article  Google Scholar 

  17. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83:1140–1144.

    Article  PubMed  CAS  Google Scholar 

  18. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89:5675–5679.

    Article  PubMed  CAS  Google Scholar 

  19. Schuett S, Bonhoeffer T, Hubener M. Mapping retinotopic structure in mouse visual cortex with optical imaging. J Neurosci 2002;22: 6549–6559.

    PubMed  CAS  Google Scholar 

  20. Das A, Gilbert CD. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 1995;375:780–784.

    Article  PubMed  CAS  Google Scholar 

  21. Toth LJ, Rao SC, Kim DS, Sur M. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci USA 1996;93:9869–9874.

    Article  PubMed  CAS  Google Scholar 

  22. Hübener M, Shoham D, Grinvald A, Bonhoeffer T. Spatial relationships among three columnar systems in cat area 17. J Neurosci 1997; 17:9270–9284.

    PubMed  Google Scholar 

  23. Sengpiel F, Stawinski P, Bonhoeffer T. Influence of experience on orientation maps in cat visual cortex. Nature Neurosci 1999;2:727–732.

    Article  PubMed  CAS  Google Scholar 

  24. Issa NP, Trachtenberg JT, Chapman B, Zahs KR, Stryker MP. The critical period for ocular dominance plasticity in the ferret’s visual cortex. J Neurosci 1999;19:6965–6978.

    PubMed  CAS  Google Scholar 

  25. Chapman B, Bonhoeffer T. Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proc Natl Acad Sci USA 1998;95:2609–2614.

    Article  PubMed  CAS  Google Scholar 

  26. White LE, Bosking WH, Williams SM, Fitzpatrick D. Maps of central visual space in Ferret V1 and V2 lack matching inputs from the two eyes. J Neurosci 1999;19:7089–7099.

    PubMed  CAS  Google Scholar 

  27. Schwartz TH. Optical imaging of epileptiform events in visual cortex in response to patterned photic stimulation. Cereb Cortex 2003; 13:1287–1298.

    Article  PubMed  Google Scholar 

  28. Fitzpatrick D. The functional organization of local circuits in visual cortex: insights from the study of tree shrew cortex. Cereb Cortex 1996;6:329–341.

    Article  PubMed  CAS  Google Scholar 

  29. Weliky M, Bosking WH, Fitzpatrick D. A systematic map of direction preference in primary visual cortex. Nature 1996;379:725–728.

    Article  PubMed  CAS  Google Scholar 

  30. Grinvald A, Frostig RD, Siege RM, Bartfeld E. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 1991;88:11559–11563.

    Article  PubMed  CAS  Google Scholar 

  31. Roe AW, Ts’o DY. Specificity of color connectivity between primate V1 and V2. J Neurophysiol 1999;82:2719–2730.

    PubMed  CAS  Google Scholar 

  32. Bonhoeffer T, Kim D-S, Maloniek, Shoham D, Grinvald A. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur J Neurosci 1995;7:1973–1988.

    Article  PubMed  CAS  Google Scholar 

  33. Kalatsky VA, Stryker MP. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 2003;38:529–545.

    Article  PubMed  CAS  Google Scholar 

  34. Sornborger A, Sailstad C, Kaplan E, Sirovich L. Spatiotemporal analysis of optical imaging data. NeuroImage 2003;18:610–621.

    Article  PubMed  CAS  Google Scholar 

  35. Brett-Green BA, Chen-Bee CH, Frostig RD. Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex. J Neurosci 2001;21:9944–9954.

    PubMed  CAS  Google Scholar 

  36. Takashima I, Kajiwara R, Iijima T. Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex. Neuroreport 2001;12:2889–2894.

    Article  PubMed  CAS  Google Scholar 

  37. Sheth SA, Nemoto M, Guiuo M, Walker M, Pouratian N, Toga AW. Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex. NeuroImage 2003;19: 884–894.

    Article  PubMed  Google Scholar 

  38. Shoham D, Grinvald A. The cortical representation of the hand in macaque and human area S-1: high resolution optical imaging. J Neurosci 2001;21:6820–6835.

    PubMed  CAS  Google Scholar 

  39. Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW. Finescale organization of S1 (Area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 2001;86:3011–3029.

    PubMed  CAS  Google Scholar 

  40. Chen LM, Friedman RM, Ramsden BM, Roe AW. Organization of the somatosensory cortex revealed with intrinsic optical imaging in the squirrel monkey. Soc Neurosci Abstr 1999;25:1167.

    Google Scholar 

  41. Arieli A, Grinvald A, Slovin H. Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications. J Neurosci Methods 2002;114:119–133.

    Article  PubMed  Google Scholar 

  42. Leão AAP. Pial circulation and spreading depression of activity in the cerbral cortex. J Neurophysiol 1944;7:391–396.

    Google Scholar 

  43. Leão AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944;7: 259–390.

    Google Scholar 

  44. Martins-Ferreira H, Nedergaard M, Nicholson C. Perspectives on spreading depression. Brain Res Rev 2000;32:215–234.

    Article  PubMed  CAS  Google Scholar 

  45. Richter F, Lemenkühler A. Spreading depression can be restricted to distinct depths of the rat cerebral cortex. Neurosci Lett 1993;152: 65–68.

    Article  PubMed  CAS  Google Scholar 

  46. Ba AM, Guiou G, Pouratian N, et al. Multiwavelength optical intrinsic signal imaging of cortical spreading depression. J Neurophysiol 2002;10:2726–2735.

    Article  Google Scholar 

  47. Hossmann KA. Glutamate-mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revised. Brain Pathol 1994; 4:23–36.

    Article  PubMed  CAS  Google Scholar 

  48. Koroleva VI, Bures J. Blockade of cortical spreading depression in electrically and chemically stimulated areas of cerebral cortex in rats. EEG Clin Neurophysiol 1980;48:1–15.

    Article  CAS  Google Scholar 

  49. Aitken PG, Tombaugh GC, Turner DA, Somjen GG. Similar propagation of SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and electrically. J Neurophysiol 1998;80:1514–1521.

    PubMed  CAS  Google Scholar 

  50. Peixonto NL, Fernandes de Lima VM, Hanke W. Correlation of the electrical and intrinsic optical signals in the chicken spreading depression phenomenon. Neurosci Lett 2001;299:89–92.

    Article  Google Scholar 

  51. Müller M, Somjen GG. Intrinsic optical signals in rat hippocampal slices during hypoxia induced spreading depression-like depolarization. J Neurophysiol 1999;82:1818–1831.

    PubMed  Google Scholar 

  52. Bahar S, Fayuk D, Somjen GG, Aitken PG, Turner DA. Mitochondrial depolarization and intrinsic optical signal Imaged during hypoxia and spreading depression in rat hippocampal slices. J Neurophysiol 2000;84: 311–324.

    PubMed  CAS  Google Scholar 

  53. O’Farrell AM, Rex DE, Jmutialu A, et al. Characterization of optical intrinsic signals and blood volume during cortical spreading depression. Neuroreport 2000;11:2121–2125.

    Article  PubMed  CAS  Google Scholar 

  54. Hauser WA, Hesdorfer DC. Epilepsy: frequency, causes and consequences. New York: Demos; 1990.

    Google Scholar 

  55. Fisher RS, Weber WR, Lesser RP, Aroyo S, Uematsu S. High-frequency EEG activity at the start of seizures. J Clin Neurophsyiol 1992;9:441–448.

    CAS  Google Scholar 

  56. Bragin A, Mody I, Wilson CL, Engel JJ. Local generation of fast ripples in epileptic brain. J Neurosci 2002;22:2012–2021.

    PubMed  CAS  Google Scholar 

  57. Staba RJ, Wilson C, Bragin A, Fried I, Engel JJ. Quantitative analysis of high-frequency oscillations(80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 2002;88:1743–1752.

    PubMed  Google Scholar 

  58. Ylinen A, Bragin A, Nádasdy Z, et al. Sharp wave associated high frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 1995;14:30–46.

    Google Scholar 

  59. Grenier F, Timofeev I, Steriade M. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. J Neurophysiol 2003;89:841–852.

    Article  PubMed  Google Scholar 

  60. Traub RD, Whittington MA, Buhl EH, et al. A possible role of gap junctions in generating very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 2001;42:153–170.

    Article  PubMed  CAS  Google Scholar 

  61. Schwartzkroin PA. Epilepsy. Models, Mechanisms and Concepts. Cambridge: Cambridge University Press; 1993.

    Google Scholar 

  62. Matsumoto H, Ajmone-Marsan C. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 1964;9: 286–304.

    Article  PubMed  CAS  Google Scholar 

  63. Matsumoto H, Ajmone-Marsan C. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 1964;9:305–326.

    Article  PubMed  CAS  Google Scholar 

  64. Prince DA. The depolarizing shift in “epileptic” neurons. Exp Neurol 1968;21: 467–485.

    Article  PubMed  CAS  Google Scholar 

  65. Chagnac-Amitai Y, Connors BW. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 1989;62:1149–1162.

    PubMed  CAS  Google Scholar 

  66. Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA mediated inhibition. J Neurophysiol 1989;61:747–758.

    PubMed  CAS  Google Scholar 

  67. Chervin RD, Pierce PA, Connors BW. Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J Neurophysiol 1988;60:1695–1713.

    PubMed  CAS  Google Scholar 

  68. Connors BW. Initiation of synchronized bursting in neocortex. Nature 1984;310:685–687.

    Article  PubMed  CAS  Google Scholar 

  69. Telfian AE, Connors BW. Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia 1998;39:700–708.

    Article  Google Scholar 

  70. Gutnick MJ, Connors BW, Prince DA. Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 1982;48:1321–1335.

    PubMed  CAS  Google Scholar 

  71. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticiy in human temporal lobe epilepsy. Brain Res 1989;495:387–395.

    Article  PubMed  Google Scholar 

  72. Prince DA, Jacobs KM, Salin PA, Hoffman S, Parada I. Chronic focal neocortical epileptogenesis: does disinhibition play a role? Can J Physiol Pharmacol 1997;75:500–507.

    Article  PubMed  CAS  Google Scholar 

  73. Schwartzkroin PA, Haglund MM. Spontaneous rhythmic activity in epileptic human and normal monkey temporal lobe. J Neurophysiol 1986;27:523–533.

    CAS  Google Scholar 

  74. Davenport CJ, Brown WJ, Babb TL. Sprouting of GABAergic and mossy fiber axons in dentate gyrus following intrahippocampal kainate injections in the rat. Exp Neurol 1990;109:180–190.

    Article  PubMed  CAS  Google Scholar 

  75. Nusser Z, Hajos N, Somogyi P, Mody I. Increased numbers of synaptic GABA(A) receptors underlies poteniation at hippocampal inhibitory synapses. Nature 1998;395:172–177.

    Article  PubMed  CAS  Google Scholar 

  76. Esclapez M, Hirsch JC, Khazipov R, Ben Ari Y, Bernard C. Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proc Natl Acad Sci USA 1997;94:12151–12156.

    Article  PubMed  CAS  Google Scholar 

  77. Isokawa-Akeson M, Wilson CL, Babb TL. Inhibition in synchronously firing human hippocampal neurons. Epilepsy Res 1989;3:236–247.

    Article  Google Scholar 

  78. Colder BW, Frysinger RC, Wilson CL, Harper M, Engel JJ. Decreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 1996;37:113–121.

    Article  PubMed  CAS  Google Scholar 

  79. Kisvárday ZF. GABAergic networks of basket cells in the visual cortex, In: Mize RR, Marc R, Sillito AM, eds. Progress in Brain Research, Vol 90, Mechanisms of GABA in the Visual System. Amsterdam: Elsevier; 1992:385–405.

    Google Scholar 

  80. Andersen P, Eccles JC, Løyning Y. Pathway of postsynaptic inhibition in the hippocampus. J Neurophysiol 1964;27:608–619.

    PubMed  CAS  Google Scholar 

  81. Dichter M, Spencer WA. Penicillin-induced interictal discharges from cat hippocampus. I. Characteristics and topographical features. J Neurophysiol 1969;32:649–662.

    PubMed  CAS  Google Scholar 

  82. Prince DA, Wilder J. Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch Neurol 1967;16:194–202.

    PubMed  CAS  Google Scholar 

  83. Goldensohn ES, Salazar AM. Temporal and spatial distribution of intracellular potentials during generation and spread of epileptogenic discharges. Adv Neurol 1986;44:559–582.

    PubMed  CAS  Google Scholar 

  84. Tucker TR, Katz LC. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. J Neurophysiol 2003;89:501–512.

    Article  PubMed  Google Scholar 

  85. Tucker TR, Katz LC. Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 2003;89:488–500.

    Article  PubMed  Google Scholar 

  86. Duncan JS. Imaging and epilepsy. Brain 1997;120:339–377.

    Article  PubMed  Google Scholar 

  87. Pedley TA. Interictal epileptiform discharges: discriminating characteristics and clinical correlations. AM J EEG Technol 1980;20:101–119.

    Google Scholar 

  88. Dichter MA, Ayala GF. Cellular mechanisms of epilepsy: a status report. Science 1987;237: 157–164.

    Article  PubMed  CAS  Google Scholar 

  89. McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994;14:3413–3425.

    PubMed  CAS  Google Scholar 

  90. Wyler AR, Burchiel KJ, Ward AAJ. Chronic epileptic foci in monkeys: correlation between seizure frequency and proportion of pacemaker neurons. Epilepsia 1978;19:475–483.

    PubMed  CAS  Google Scholar 

  91. Prince DA, Futamachi KJ. Intracellular recordings from chronic epileptogenic foci in the monkey. Electroencephalogr Clin Neurophysiol 1970;29:496–510.

    Article  PubMed  CAS  Google Scholar 

  92. Cohen I, Navaro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2002;298:1418–1421.

    Article  PubMed  CAS  Google Scholar 

  93. Penfield W. The evidence for cerebral vascular mechanism in epilepsy. Ann Intern Med 1933;7: 303–310.

    Google Scholar 

  94. Hochman DW, Baraban SC, Owens JWM, Schwartzkroin PA. Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 1995;270:99–102.

    Article  PubMed  CAS  Google Scholar 

  95. Buchheim K, Schuchmann S, Siegmund H, Weissinger F, Heinemann U, Meierkord H. Comparison of intrinsic optical signals associated with low Mg2+-and 4-aminopyridine-induced seizurelike events reveals characteristic features in the adult rat limbic system. Epilepsia 2000;41:635–641.

    Article  PubMed  CAS  Google Scholar 

  96. Weissinger F, Buchheim K, Siegmund H, Heinemann U, Meierkord H. Optical imaging reveals characteristic seizure onsets, spread patterns, and propagation velocities in hippocampal-entorhinal cortex slices of juvenile rats. Neurobiol Dis 2000;7:286–298.

    Article  PubMed  CAS  Google Scholar 

  97. D’Arcangelo G, Tancredi V, Avoli M. Intrinsic optical signals and electrographic seizures in the rat limbic system. Neurobiol Dis 2001; 8:993–1005.

    Article  PubMed  CAS  Google Scholar 

  98. Federico P, Borg SG, Salkauskus AG, MacVicar BA. Mapping patterns of neuronal activity and seizure propagation in the isolated whole brain of the guinea-pig. Neuroscience 1994;58:461–480.

    Article  PubMed  CAS  Google Scholar 

  99. Chen JWY, O’Farrell AM, Toga AW. Optical intrinsic signal imaging in a rodent seizure model. Neurology 2000;55:312–315.

    PubMed  CAS  Google Scholar 

  100. Schwartz TH, Bonhoeffer T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat. Med 2001; 7:1063–1067.

    Article  PubMed  CAS  Google Scholar 

  101. Haglund MM, Blasdel GG. Optical imaging of acute epileptic foci in monkey visual cortex. Epilepsia 1993;34:21.

    Google Scholar 

  102. Haglund MM, Ojemann GA, Hochman DW. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 1992;358:668–671.

    Article  PubMed  CAS  Google Scholar 

  103. Engel JJ, Shewmon DA. Who should be considered a surgical candidate?, In: Engel JJ, ed. Surgical Treatment of the Epilepsies. New York: Raven Press; 1993:23–34.

    Google Scholar 

  104. Buzsáki G, Traub RD. Physiological basis of EEG activity, In: Engel TA, Pedley TA, ed. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven Publishers; 1997:819–830.

    Google Scholar 

  105. Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conduction theory to electroencephalography. J Clin Neurophysiol 1985;2:327–354.

    Article  PubMed  CAS  Google Scholar 

  106. Alarcon G, Guy CN, Binnie CD, Walker SR, Owes R, Polkey CE. Intracerebral propagation of interictal spikes in partial epilepsy: implications for source localization. J Neurol Neurosurg Psychiatry 1994;57: 435–449.

    PubMed  CAS  Google Scholar 

  107. Uematsu D, Araki N, Greenberg JH, Reivich M. Alterations in cytosolic free calcium in the cat cortex during bicuculline-induced epilepsy. Brain Res Bull 1990;24:285–288.

    Article  PubMed  CAS  Google Scholar 

  108. Purpura DP, Pernry JK, Tower D, Woodbury DM, Walter R. Experimental Models of Epilepsy-A Manual for the Laboratory Worker. New York: Raven Press; 1972.

    Google Scholar 

  109. Fisher RS. Animal models of the epilepsies. Brain Res Rev 1989; 14:245–278.

    Article  PubMed  CAS  Google Scholar 

  110. Prince DA. Topical convulsant drugs and metabolic antagonists, In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD, eds. Experimental Models of Epilepsy—A Manual for the Laboratory Worker. New York: Raven Press; 1972:52–83.

    Google Scholar 

  111. Szente M, Pongracz F. Aminopyridine-induced seizure activity. Electroencephalogr Clin Neurophysiol 1979;46:605–608.

    Article  PubMed  CAS  Google Scholar 

  112. Szente BM, Baranyi A. Mechanism of aminopyridine-induced ictal seizure activity in the cat neocortex. Brain Res 1987;41:386–373.

    Google Scholar 

  113. Ajmone Marsan C. Focal electrical stimulation, In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD, ed. Experimental Models of Epilepsy—A Manual for the Laboratory Worker. New York: Raven Press; 1972:148–169.

    Google Scholar 

  114. Bashir ZI, Holmes O. Phases in the development of a penicillin epileptiform focus in rat neocortex. Exp Brain Res 1993;96:319–327.

    Article  PubMed  CAS  Google Scholar 

  115. Campbell A, Homes O. Bicuculline epileptogenesis in the rat. Brain Res 1984;323:239–246.

    Article  PubMed  CAS  Google Scholar 

  116. Petsche H, Prohaska O, Rappelsburger P, Vollmer R, Kaiser A. Cortical seizure patterns in a multidimensional view: the information content of equipotential maps. Epilepsia 1974;15:439–463.

    PubMed  CAS  Google Scholar 

  117. Goldensohn ES, Zablow L, Salazar A. The penicillin focus. I. Distribution of potential at the cortical surface. Electroencephalogr Clin Neurophysiol 1977;42:480–492.

    Article  PubMed  CAS  Google Scholar 

  118. Wyler AR, Ward AAJ. Epileptic neurons, In: Lockard JSS, Ward AAJ, eds. Epilepsy: A Window to Brain Mechanisms. New York: Raven; 1980: 51–68.

    Google Scholar 

  119. Wyler AR, Ojemann GA, Ward AA, Jr. Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann Neurol 1982;11:301–308.

    Article  PubMed  CAS  Google Scholar 

  120. Ishijima B, Hori T, Yoshimasu N, Fukushima T, Hirakawa K, Seikino H. Neuronal activities in human epileptic foci and surrounding areas. EEG Clin Neurophysiol 1975;39:643–650.

    Article  CAS  Google Scholar 

  121. Mattia D, Haw GG, Avoli M. Epileptiform activity induced by 4-aminopyridine in guinea-pig and rat neocortices. Neurosci Lett 1993;154:157–160.

    Article  PubMed  CAS  Google Scholar 

  122. Stansfeld CE, Marsh SJ, Halliwell JV, Brown D. 4-Aminopyridine and dendrotoxin induce repetitive firing in rat visceral sensory neurons by slowly inactivating outward current. Neurosci Lett 1986;64: 299–304.

    Article  PubMed  CAS  Google Scholar 

  123. Barkai E, Friedman A, Grossman Y, Gutnick MJ. Laminar pattern of synaptic inhibition during convulsive activity induced by 4-aminopyridine in neocortical slices. J Neurophysiol 1995;73:1462–1467.

    PubMed  CAS  Google Scholar 

  124. Benardo LS. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J Neurophysiol 1997;77:3134–3144.

    PubMed  CAS  Google Scholar 

  125. Rogawski MA, Barker JA. Effects of 4-aminopyridine on calcium action potentials and calcium current under voltage clamp in spinal neurons. Brain Res 1983;280:180–185.

    Article  PubMed  CAS  Google Scholar 

  126. Szente BM, Baranyi A. Properties of depolarizing plateau potentials in aminopyridine-induced ictal seizure foci of cat motor cortex. Brain Res 1989;495:261–270.

    Article  PubMed  CAS  Google Scholar 

  127. Yang XF, Rothman SM. Focal cooling rapidly terminates experimental neocortical seizures. Ann Neurol 2001;49:721–726.

    Article  PubMed  CAS  Google Scholar 

  128. Yang XF, Chang JH, Rothman SM. Intracerebral temperature alterations associated with focal seizures. Epilepsy Res 2002;52:97–105.

    Article  PubMed  Google Scholar 

  129. Wong BY, Prince DA. The lateral spread of ictal discharges in neocortical brain slices. Epilepsy Res 1990;7:29–39.

    Article  PubMed  CAS  Google Scholar 

  130. Ratzlaff EH, Grinvald A. A tandem-lens epifluorescence microscope: hundred-fold brightness advantage for wide field imaging. J Neurosci Methods 1991;36:127–137.

    Article  PubMed  CAS  Google Scholar 

  131. Chen-Bee CH, Kwon MC, Masino SA, Frostig RD. Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Meth 1996;68:27–37.

    Article  CAS  Google Scholar 

  132. Masino SA, Kwon MC, Dory Y, Frostig R. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 1993;90: 9998–10002.

    Article  PubMed  CAS  Google Scholar 

  133. Szente MB, Boda B. Cellular mechanisms of neocortical secondary epileptogenesis. Brain Res 1994; 648:203–214.

    Article  PubMed  CAS  Google Scholar 

  134. Schwartzkroin PA, Futamachi KJ, Noebels JL, Prince DA. Transcallosal effects of a cortical epileptiform focus. Brain Res 1975;99:59–68.

    Article  PubMed  CAS  Google Scholar 

  135. Engel JJ. Surgery for seizures. N Engl J Med 1996;334:647–652.

    Article  PubMed  Google Scholar 

  136. Babb TL, Crandall PH. Epileptogenesis of human limbic neurons in psychomotor epileptics. EEG Clin Neurophysiol 1976;40:225–243.

    Article  CAS  Google Scholar 

  137. Engel JJ. Functional explorations of the human epileptic brain and their therapeutic implications. EEG Clin Neurophysiol 1990;76:296–316.

    Article  Google Scholar 

  138. Engel JJ. Intracerebral recordings: organization of the human epileptogenic region. J Clin Neurophysiol 1993;10:90–98.

    Article  PubMed  Google Scholar 

  139. Kutsy RL, Farrell DF, Ojemann GA. Ictal patterns of neocortical seizures monitored with intracranial electrodes: correlation with surgical outcome. Epilepsia 1999;30:257–266.

    Article  Google Scholar 

  140. Spencer SS, Guimaraes P, Kim J, Spencer DD. Morphological patterns of seizures recorded intracranially. Epilepsia 1992;33:537–545.

    Article  PubMed  CAS  Google Scholar 

  141. Williamson A, Spencer SS, Spencer DD. Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy. Ann Neurol 1995;38:778–787.

    Article  PubMed  CAS  Google Scholar 

  142. Spencer SS, Spencer DD. Implications of seizure termination location in temporal lobe epilepsy. Epilepsia 1996;37:455–458.

    Article  PubMed  CAS  Google Scholar 

  143. Netoff TI, Schiff SS. Decreased neuronal synchronization during experimental seizures. J Neurosci 2002;22:7297–7307.

    PubMed  CAS  Google Scholar 

  144. Ayala GF, Matsumoto H, Gumnit RJ. Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol 1970;33:73–85.

    PubMed  CAS  Google Scholar 

  145. Haycock JW, Levy WB, Cotman CW. Stimulation-dependent depression of neurotransmitter release in the brain: [Ca] dependence. Brain Res 1987;155:192–195.

    Article  Google Scholar 

  146. Bragin A, Penttonen M, Buzsáki G. Termination of epileptic afterdischarge in the hippocampus. J Neurosci 1997;17:2567–2579.

    PubMed  CAS  Google Scholar 

  147. Binnie CD, Wilkins AJ. Visually induced seizures not caused by flicker (intermittent right stimulation), In: Zifkin BG, Andermann F, Beaumanoir A, Rowan AJ, ed. Advances in Neurology. Philadelphia: Lippincott-Raven; 1998:123–138.

    Google Scholar 

  148. Dorothée GA, Trenité K-N. Reflex seizures induced by intermittent light stimulation, In: Zifkin BG, Andermann F, Beaumanoir A, Rowan AJ, eds. Advances in Neurology. Philadelphia: Lippincott-Raven; 1998:99–121.

    Google Scholar 

  149. Ribak CE, Reiffenstein RJ. Selective inhibitory synapse loss in chronic cortical slabs: a morphological basis for epileptic susceptibility. Can J Physiol Pharmacol 1982;60:864–870.

    PubMed  CAS  Google Scholar 

  150. Prince DA, Tseng G-F. Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 1993;69:1276–1291.

    PubMed  CAS  Google Scholar 

  151. Salin P, Tseng G-F, Hoffman S, Parada I, Prince DA. Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J Neurosci 1995;15:8234–8245.

    PubMed  CAS  Google Scholar 

  152. Lewis DV, Mutsuga N, Schuette WH. Potassium clearance and reactive gliosis in the alumna cream model. Epilepsia 1977;18:499–506.

    PubMed  CAS  Google Scholar 

  153. Haglund MM, Berger MS, Kunkel DD, Franck JE, Ghatan S, Ojemann GA. Changes in α-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J Neurosurg 1992;77:209–216.

    PubMed  CAS  Google Scholar 

  154. Ward AA. Topical convulsant metals, In: Purpura DP, Penry JK, Woodbury DM, Tower DB, Walter RD, eds. Experimental Models of Epilepsy—A Manual for the Laboratory Worker. New York: Raven; 1972:13–35.

    Google Scholar 

  155. Prince DA, Futamachi KJ. Intracellular recordings in chronic focal epilepsy. Brain Res 1968;11: 681–684.

    Article  PubMed  CAS  Google Scholar 

  156. Atkinson JR, Ward AAJ. Intracellular studies of cortical neurons in chronic epileptogenic foci in the monkey. Exp Neurol 1964;10:285–295.

    Article  PubMed  CAS  Google Scholar 

  157. Ward AAJ. The epileptic neurone. Epilepsia 1961;2:70–80.

    Article  PubMed  Google Scholar 

  158. Willmore LJ, Sypert GW, Munson JB, Hurd RW. Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 1978;200:1501–1503.

    Article  PubMed  CAS  Google Scholar 

  159. Willmore LJ, Sypert GW, Munson JB. Recurrent seizures induced by cortical iron injection: a model of posttraumatic epilepsy. Ann Neurol 1978;4:329–336.

    Article  PubMed  CAS  Google Scholar 

  160. Moriwaki A, Hattori Y, Nishida N, Hori Y. Electrographic characterization of chronic iron-induced epilepsy in rats. Neurosci Lett 1990;110:72–76.

    Article  PubMed  CAS  Google Scholar 

  161. Moriwaki A, Hattori Y, Hayashi Y, Hori Y. Development of epileptic activity induced by iron injection into rat cerebral lcortex: electrographic and behavioral characteristics. EEG Clin Neurophysiol 1992;83:281–288.

    Article  CAS  Google Scholar 

  162. Willmore LJ, Rubin JJ. Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies. Neurology 1981;31:63–69.

    PubMed  CAS  Google Scholar 

  163. Engstrom R, Hillered L, Flink R, Kihlstrom L, Lindquist C, Nie J-X, Olsson Y, Silander HC. Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracortical iron injection. Epilepsy Research 2001;43:135–144.

    Article  PubMed  CAS  Google Scholar 

  164. Reid SA, Sypert GW, Boggs WM, Williams LJ. Histopathology of the ferric-induced chronic epileptic focus in the cat: a golgi study. Exp Neurol 1979;66:205–219.

    Article  PubMed  CAS  Google Scholar 

  165. Westrum LE, White LE, Ward AAJ. Morphology of the experimental epileptic focus. J Neurosurg 1964; 21:1033–1046.

    PubMed  CAS  Google Scholar 

  166. Schiebel ME, Crandall PH, Schiebel AB. The hippocampal-dentate complex in temporal lobe epilepsy-a golgi study. Epilepsia 1974; 15:55–80.

    Google Scholar 

  167. Brooks VB, Asunama H. Action of tetanus toxin in the cerebral cortex. Science 1962;137:674–676.

    Article  PubMed  CAS  Google Scholar 

  168. Carrea R, Lanari A. Chronic effects of tetanus toxin applied locally in the cerebral cortex of the dog. Science 1962;137:342–343.

    Article  PubMed  CAS  Google Scholar 

  169. Mellanby J, George G, Robinson A, Thompson PA. Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 1977;40:404–414.

    PubMed  CAS  Google Scholar 

  170. Brener K, Amitai Y, Jeffreys JGR, Gutnick MJ. Chronic epileptic foci in neocotex: In vivo and in vitro efects of tetanus toxin. Eur J Neurosci 1990;3:47–54.

    Article  Google Scholar 

  171. Finnerty GT, Jeffreys JGR. Investigations of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy. J Neurophysiol 2002;88:2919–2927.

    Article  PubMed  CAS  Google Scholar 

  172. Louis ED, Williamson PD, Darcey TM. Chronic focal epilepsy induced by microinjection of tetanus toxin ino the cat motor cortex. EEG Clin Neurophysiol 1990;75:548–557.

    Article  CAS  Google Scholar 

  173. Hagemann G, Bruehl C, Lutzenburg M, Wite OW. Brain hypometabolism in a rat model of chronic focal epilepsy in rat neocortex. Epilepsia 1998;39:339–346.

    Article  PubMed  CAS  Google Scholar 

  174. Penner R, Heher E, Dreyer F. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromafin cells. Nature Med 1986;324:76–78.

    Article  CAS  Google Scholar 

  175. Calabresi P, Benedeti M, Mercuri NB, Bernardi G. Selective depression of synaptic transmission by tetanus toxin. A comparative study on hippocampal and neostriatal slices. Neurosci 1989;30:663–670.

    Article  CAS  Google Scholar 

  176. Bergey GK, Bigalke H, Nelson PG. Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture; a presynaptic locus of action for tetanus toxin. J Neurophysiol 1987;57:121–131.

    PubMed  CAS  Google Scholar 

  177. Empson RM, Jeffreys JGR. Synaptic inhibition in primary and secondary chronic epileptic foci induced by intrahippocampal tetanus toxin in the rat. J Physiol 1993;465:595–614.

    PubMed  CAS  Google Scholar 

  178. Habermann E, Erdmann G. Pharmacokinetic and histoautoradiographic evidence for the intraaxonal movement of toxin in the pathogenesis of tetanus. Toxicon 1974;16:611–623.

    Article  Google Scholar 

  179. Schwab ME, Suda K, Thoenen H. Selective retrograde synaptic transfer of a protein, tetanus toxin, subsequent to its retrotransport. J Cell Biol 1979;82:798–810.

    Article  PubMed  CAS  Google Scholar 

  180. Liang F, Jones EG. Differential and time-dependent changes in gene expression or type II calcium/calmodulin-dependent protein kinase, 67 kDa glutamic acid decarboxylase, and glutamate receptor subunits in tetanus toxin-induced focal epilepsy. J Neuroscience 1997; 17:2168–2180.

    CAS  Google Scholar 

  181. Bergey GK, Macdonald RL, Habig WH, Hardegree MC, Nelson PG. Tetanus toxin convulsant action in spinal cord neurons in culture. J Neurosci 1983;3:2310–2323.

    PubMed  CAS  Google Scholar 

  182. Jeffreys JGR, Evans BJ, Hughes SA, Williams SF. Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in the rat: preservation of pyramidal cells and incidence of dark cells. Neuropath Appl Neurobiol 1992;18:53–70.

    Article  Google Scholar 

  183. MacVicar BA, Hochman D, LeBlanc FE, Watson TW. Stimulation evoked changes in intrinsic optical signals the human brain. Soc Neurosci Abstr 1990;16:309.

    Google Scholar 

  184. Cannestra AF, Black KL, Martin NA, et al. Topographical and temporal specificity of human intraoperative optical intrinsic signals. NeuroReport 1998;9:2557–2563.

    Article  PubMed  CAS  Google Scholar 

  185. Cannestra AF, Blood AJ, Black KL, Toga AW. The evolution of optical signals in human and rodent cortex. NeuroImage 1996;3: 202–208.

    Article  PubMed  CAS  Google Scholar 

  186. Cannestra AF, Bookheimer SY, O’Farrell A, et al. Temporal and topographical characterization of language cortices utilizing intraoperative optical intrinsic signals. NeuroImage 2000;12:41–54.

    Article  PubMed  CAS  Google Scholar 

  187. Cannestra AF, Pouratian N, Bookheimer SY, Martin NA, Becker DP, Toga AW. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cerebral Cortex 2001;11:773–782.

    Article  PubMed  CAS  Google Scholar 

  188. Pouratian N, Bookheimer SY, O’Farrell AM, et al. Optical imaging of bilingual cortical representations. Case report. J Neurosurg 2000; 93:676–681.

    PubMed  CAS  Google Scholar 

  189. Pouratian N, Sheth SA, Martin NA, Toga AW. Shedding light on brain mapping: advances in human optical imaging. Trends Neurosci 2003;26:277–282.

    Article  PubMed  CAS  Google Scholar 

  190. Sato K, Nariai T, Sasaki S, et al. Intraoperative intrinsic signal imaging of neuronal activity from subdivisions of the human primary somatosensory cortex. Cerebral Cortex 2002;12:269–280.

    Article  PubMed  Google Scholar 

  191. Toga AW, Cannestra AF, Black KW. The temporal/spatial evolution of optical signals in human cortex. Cerebral Cortex 1995;5:561–565.

    Article  PubMed  CAS  Google Scholar 

  192. Mayhew JEW, Askew S, Zheng Y, et al. Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity. NeuroImage 1996;4:183–193.

    Article  PubMed  CAS  Google Scholar 

  193. Mitra PP, Pesaran B. Analysis of dynamic brain imaging data. Biophys J 1999;76:691–708.

    Article  PubMed  CAS  Google Scholar 

  194. Kraemer DL, Spencer DD. Anesthesia in epilepsy surgery, In: Engel JJ, ed. Surgical Treatment of the Epilepsies. New York: Raven Press, Ltd.; 1993:527–538.

    Google Scholar 

  195. Schwartz TH, Chen L-M, Friedman RM, Spencer DD, Roe AW. Intraoperative optical imaging of human face cortical topography: a case study. Neuroreport 2004;15:1527–1531.

    Article  PubMed  Google Scholar 

  196. Nelson RJ, Sur M, Felleman DJ, Kaas JH. Representation of the body surface in postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 1980;192:611–643.

    Article  PubMed  CAS  Google Scholar 

  197. Felleman DJ, Nelson RJ, Sur M, Kaas JH. Representations of the body surface in areas 3b and 1 of postcentral parietal cortex of cebus monkeys. Brain Res 1983;268:15–26.

    Article  PubMed  CAS  Google Scholar 

  198. Jain N, Qi H-X, Catania KC, Kaas JH. Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 2001;429:455–468.

    Article  PubMed  CAS  Google Scholar 

  199. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston, Little Brown, 1954.

    Google Scholar 

  200. Van Buren JM. Sensory responses from stimulation of the inferior Rolandic and Sylvian regions in man. J Neurosurg 1983;59:119–130.

    PubMed  Google Scholar 

  201. Uematsu S, Lesser R, Fisher RS, et al. Motor and sensory cortex in human: topography studied with chronic subdural stimulation. Neurosurgery 1992;31:59–72.

    Article  PubMed  CAS  Google Scholar 

  202. Sur M, Merzenich MM, Kaas JH. Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 1980;44:295–311.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bahar, S., Suh, M., Mehta, A., Schwartz, T.H. (2005). In Vivo Intrinsic Optical Signal Imaging of Neocortical Epilepsy. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_14

Download citation

Publish with us

Policies and ethics