Skip to main content

Evolution of Astrocytes in the Vertebrate CNS

  • Chapter
Neuron-Glia Interrelations During Phylogeny

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 111 Accesses

Abstract

It has become more and more clear that astrocytes can no longer be considered as a homogeneous cell population. Astrocytes are heterogeneous in different brain regions and at different developmental stages, as well as in different vertebrate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achûcarro N (1913) De l’evolution de la néuroglie, et spécialement de ses relations avec l’appareil vasculaire. Trab Lab Inv Biol 11: 169–213.

    Google Scholar 

  • Alvarez-Buylla A Burskirk DR Nottebohm F (1987) Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 264: 159–170.

    Google Scholar 

  • Anders JJ Brightman MW (1979) Assemblies of particles in the cell membranes of developing, mature and reactive astrocytes. J Neurocytol 8: 777–795.

    Article  Google Scholar 

  • Anderson MJ Swanson KA Waxman SG Eng LF (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. J Histochem Cytochem 31: 1099–1106.

    Google Scholar 

  • Angevine JB (1970) Time of neuron origin in the diencephalon of the mouse. J Comp Neurol 139: 129–187.

    Article  PubMed  Google Scholar 

  • Basco E Woodhams PL HajSs F Balazs R (1981) Immunocytochemical demonstration of glial fibrillary acidic protein mouse tanycytes. Anat Embryol 162: 217–222.

    Google Scholar 

  • Batista MAP Fernandez B Suarez I (1981) Estudio de los componentes astrocitarios del hipotalamo del Chalcides viridanus (reptil, Scincidae). Morp Norm Patol 5: 47–53.

    Google Scholar 

  • Benjelloun-Touimi S Jacque CM Derer P De Vitry F Maunory R Dupouey P (1985) Evidence that mouse astrocytes may be derived from the radial glia. An immunohistochemical study of the cerebellum in the normal and reeler mouse. J Neuroimmunol 9: 87–97.

    Google Scholar 

  • Bignami A Dahl D (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the GFAP. J Comp Neurol 153: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Bignami A Dahl D (1979) The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. Exp Eye Res 28: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Björklund H Eriksdotter-Nilsson M Dahl D Hoffer B Olson L (1985) Image analysis of GFAP-positive astrocytes from adolescence to senescence. Exp Brain Res 58: 163–170.

    Google Scholar 

  • Black JA Waxman SG (1988) The perinodal astrocyte. Glia 1: 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Bodega G Suarez I Fernandez B (1990a) Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). An immunohistochemi-cal and ultrastructural study. Cell Tissue Res 260: 307–314.

    Google Scholar 

  • Bodega G Suarez I Rubio M Fernandez B (1990b) Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat Embryol 181: 567–575.

    Google Scholar 

  • Bodega G Suarez I Rubio M Villalba RM Fernandez B (1992) Hyperammonemia induces transient GFAP immunoreactivity changes in goldfish spinal cord (Carassius auratus L.). Neurosci Res 13: 217–225.

    Google Scholar 

  • Bodega G Suarez I Rubio M Villaba RM Fernandez B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol 187: 385–395.

    Google Scholar 

  • Bodega G Suarez I Rubio M Fernandez B (1994) Ependyma: phylogenetical evolution of GFAP and vimentin expression in vertebrate spinal cord. Histochemistry 102: 113–122.

    Google Scholar 

  • Bonfanti L Poulain DA Theodosis DT (1993) Radial glia-like cells in the supraoptic nucleus of the adult rat. J Neuroendoc 5: 1–5.

    Google Scholar 

  • Bovolenta P Liem RKH Mason CA (1984) Development of cerebellar astroglia:transitions in form and cytoskeletal content. Dey Biol 102: 248–259.

    Google Scholar 

  • Bruni JE Bigio MR Clattenburg RE (1985) Ependyma: normal and pathologi-cal. A review of the literature. Brain Res Rev 9: 1–19.

    Google Scholar 

  • Bullôn MM Alvarez-Gago T Fernandez B Aguirre C (1984) Glial fibrillary acidic (GFAP) protein in rat spinal cord. An immunoperoxidase study in semithin sections. Brain Res 309: 79–83.

    Google Scholar 

  • Cameron-Curry P Aste N Viglietti-Panzica C Panzica GC (1991) Immunocytochemical distribution of glial fibrillary acidic protein in the central nervous system of the japanese quail (Coturnix coturnix japonica). Anat Embryol 184: 571–581.

    Google Scholar 

  • Cardone B Roots BI (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3: 180–192.

    Article  PubMed  CAS  Google Scholar 

  • Choi B (1988) Prenatal gliogenesis in the developing cerebrum of the mouse. Glia 1: 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Dahl D (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res 6: 741–748.

    Article  PubMed  CAS  Google Scholar 

  • Dahl D Bignami A (1973) Immunochemical and immuno-fluorescence studies of the GFAP in vertebrates. Brain Res 61: 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Dahl D Crosby CJ Sethi JS Bignami A (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol 239: 75–88.

    Google Scholar 

  • Didier M Harandi M Aguera M Bancel B Tardy M Fages C Calas A Stagaard M Mollgard K Belin MF (1986) Differential immunocytochemical staining for GFA protein, S-100 protein and glutamine synthetase in the rat subcommissural organ, nonspecialized ventricular ependyma and adjacent neuropil. Cell Tissue Res 245: 343–351.

    Google Scholar 

  • Dupouey P Benjelloun S Gomes D (1985) Immunohistochemical demonstration of an organized cytoarchitecture of the radial glia in the CNS of the embryonic mouse. Dev Neurosci 7: 81–93.

    Google Scholar 

  • Eng LF (1985) Glial fibrillary acidic protein (GFAP) the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez B Suarez I Gonzalez G (1984) Topographical distribution of the astrocytic lamellae in the hypothalamus. Anat Anz 156: 31–37.

    Google Scholar 

  • Garcia-Segura LM Baetens D Naftolin F (1986) Synaptic remodelling in arcuate nucleus after injection of estradiol valerate in adult female rats. Brain Res 366: 131–136.

    Google Scholar 

  • Gianonatti C Fernandez B Suarez I Bodega G (1984) Glioarchitecture du cervelet de poulet. Arch Biol 95: 71–82.

    Google Scholar 

  • Gould SJ Howard S Papadaki L (1990) The development of ependyma in the human fetal brain: an immunohistological and electron microscopic study. Dev Brain Res 55: 255–267.

    Google Scholar 

  • Hajôs F Kalman M (1989) Distribution of glial fibrillary acidic protein (GFAP)immunoreactive astrocytes in the rat brain. Exp Brain Res 78: 164–173.

    PubMed  Google Scholar 

  • Hirano M Goldman JE (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Horstmann E (1954) Die faserglia des selachiergehirns. Z Zellforsch 39: 588–617. Horstmann E (1959) Zur frage des extracellulären raumes in zentralnervensystem. Anat Anz 105: 100–106.

    Google Scholar 

  • Kalman M Székely AD Csillag A (1993) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the domestic chicken (Gallus domesticus). J Comp Neurol 330: 221–237.

    Google Scholar 

  • King JS (1966) A comparative investigation of neuroglia in representative vertebrates: a silver carbonate study. J Morphol 119: 435–466.

    Article  PubMed  CAS  Google Scholar 

  • Korte GE Rosenbluth J (1981) Ependymal astrocytes in the frog cerebellum. Anat Rec 199: 267–279.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H Krisch B Erhardt H (1987) Organization of the neuroglia in the midsagittal plane of the central nervous system: a speculative report, in Functional morphology of Neuroendocrine Systems ( Scharrer B Korf HW Hartwig HG, eds.), Springer-Verlag, Berlin-Heidelberg, pp. 175–187.

    Google Scholar 

  • Levitt P Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing Rhesus monkey brain. J Comp Neurol 193: 815–840.

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi FJ Miller RH (1987) Radially oriented astrocytes in the adult rat spinal cord. Brain Res 403: 385–388.

    Article  PubMed  CAS  Google Scholar 

  • McDermott KWG Lantos PL (1989) The distribution of GFAP and vimentin in postnatal marmoset (Callithrix jacchus) brain. Dev Brain Res 45: 169–177.

    Article  CAS  Google Scholar 

  • Meshul CK Seil FJ Herndon RM (1987) Astrocytes play a role in regulation of synaptic density. Brain Res 402: 139–145.

    Google Scholar 

  • Miller RH Liuzzi FJ (1986) Regional specialization of the radial glial cells of the adult frog spinal cord. J Neurocytol 15: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Misson JP Edwards MA Yamamoto M Caviness VS (1988) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Dev Brain Res 38: 183–190.

    Google Scholar 

  • Monzon-Mayor M Yanes C Ghandour MS De Barry J Gombos G (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol 294: 1–11.

    Google Scholar 

  • Nona SN Shehab SAS Stafford CA Cronly-Dillon JR (1989) Glial fibrillary acidic protein (GFAP) from goldfish: its localization in visual pathway. Glia 2: 189–200.

    Google Scholar 

  • Onteniente B Kimura H Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215: 427–436.

    Google Scholar 

  • Peters A Palay SL Webster HF (1976) The Fine Structure of the Nervous Sys-tem: Neurons and Supporting Cells. WB Saunders, Philadelphia.

    Google Scholar 

  • Raine CS (1984) On the association between perinodal astrocytic processes and the node of Ranvier in the CNS. J Neurocytol 13: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1981) Neuronal-glial interaction during brain development. Trends Neurosci 4: 184–187.

    Article  Google Scholar 

  • Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vertébrés. Reimp. CSIC Madrid 1952–1955.

    Google Scholar 

  • Ramón y Cajal S (1919) Nota sobre las epitelio fibrillas del epéndimo. Trab Lab Inv Biol 17: 87–94.

    Google Scholar 

  • Reichenbach A (1990) Radial glial cells are present in the velum medullare of adult monkeys. J Hirnforsch 31: 269–271.

    PubMed  CAS  Google Scholar 

  • Roessmann U Velasco ME Sindley SD Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200: 13–21.

    Google Scholar 

  • Roots B (1982) Comparative studies on glial markers. J Exp Biol 95: 167–180.

    Google Scholar 

  • Roots B (1986) Phylogenetic development of astrocytes, in Astrocytes.Development, Morphology and Regional Specialization of Astrocytes. vol. 1. ( Fedoroff S Vernadakis A, eds.), Academic, Orlando, FL, pp. 1–34.

    Google Scholar 

  • Rubio M Suarez I Bodega G Fernandez B (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the iberian barb (Barbus comiza). Neurosci Lett 134: 203–206.

    Google Scholar 

  • Sarnat HB (1992) Regional differentiation of the human fetal ependyma: immunocytochemical markers. J Neuropathol Exp Neurol 51: 58–75.

    Article  PubMed  CAS  Google Scholar 

  • Sensenbrenner M Develliers G Bock K Porte A (1980) Biochemical and ultrastructural studies of cultures rat astroglial cells. Effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filament. Differentiation 17: 51–61.

    Google Scholar 

  • Stensaas LJ Stensaas SS (1968) Light microscopy of glial cells in turtles and birds. Z Zellforsch 91: 315–340.

    Article  PubMed  CAS  Google Scholar 

  • Suarez I Fernandez B (1983) Structure and ultrastructure of the external glial layer in the hypothalamus of the hamster. J Hirnforsch 24: 99–109.

    PubMed  CAS  Google Scholar 

  • Suarez I Raff MC (1989) Subpial and perivascular astrocytes associated with nodes of Ranvier in the rat optic nerve. J Neurocytol 18: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Suarez I Fernández B Garcia-Segura LM (1980) Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster. J Anat 130: 55–61.

    Google Scholar 

  • Suarez I Fernández B Bodega G Tranque P Olmos G Garcia-Segura LM (1987) Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus. Dev Brain Res 37: 89–95.

    Google Scholar 

  • Suarez I Bodega G Arilla E Rubio M Villalba RM Fernandez B (1992) Different response of astrocytes and Bergmann glial cells to portacaval shunt: an immunohistochemical study in the rat cerebellum. Glia 6: 172–179.

    Google Scholar 

  • Suarez I Bodega G Rubio M Garcia-Segura LM Fernandez B (1994) Astroglial induction of angiogenesis in vivo. J Neural Transp Plast 5: 1–10.

    Google Scholar 

  • Vernadakis A (1986) Changes in astrocytes with aging, in Astrocytes. Development, Morphology and Regional Specialization of Astrocytes. vol 1. ( Fedoroff S Vernadakis A, eds.), Academic, Orlando, FL, pp. 377–407.

    Google Scholar 

  • Voight T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289: 74–88.

    Article  Google Scholar 

  • Wolburg H Kästner R Kurz-Isler G (1983) Lack of orthogonal particle assemblies and presence of tight junctions in astrocytes of goldfish. A freeze-fracture study. Cell Tissue Res 234: 389–402.

    Google Scholar 

  • Wujek JR Reier PJ (1984) Astrocytic membrane morphology: differences between mammalian and amphibian astrocytes after axotomy. J Comp Neurol 222: 607–619.

    Article  PubMed  CAS  Google Scholar 

  • Yanes C Monz6n-Mayor M Ghandour MS De Barry J Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 295: 559–568.

    Google Scholar 

  • Zamora AJ Mutin M (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience 27: 279–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suárez, I., Bodega, G., Rubio, M., Fernández, B. (1995). Evolution of Astrocytes in the Vertebrate CNS. In: Vernadakis, A., Roots, B.I. (eds) Neuron-Glia Interrelations During Phylogeny. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-467-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-467-2_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-010-6

  • Online ISBN: 978-1-59259-467-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics