Skip to main content

Epigenetic Mechanisms Regulating Gene Expression

  • Chapter
Introduction to Bioinformatics

Abstract

Epigenetic mechanisms regulate gene function in a heritable manner, but do so without modulating the DNA sequence of the affected gene. Many different genetic functions are influenced by epigenetic mechanisms in various species. These include regulation of gene expression, DNA modification and restriction, genomic imprinting, X-chromosome inactivation, paramutation, position effect variegation, mating type, cell determination, transposable elements, and mutator and suppressor genes. This chapter will focus on epigenetic mechanisms that regulate gene expression and the manner in which they accomplish this in mammalian species.

“ The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in primary DNA sequence.”

A. D. Riggs, 1996

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Readings

Introduction

  • Russo, E., Martienssen, R., and Riggs, A.D. (eds.) (1996) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

DNA Methylation

  • Ariel, M., Cedar, H., and McCarrey, J. R. (1994) Developmental changes in Pgk-2 gene methylation during spermatogenesis in the mouse: Reprogramming occurs in epididymal spermatozoa, Nat. Genet. 7, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath, I. and Cedar, H. (2000) Imprinting: focusing on the center, Curr. Op. Genet. Dev. 10, 550–554.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T. H. (2000) The DNA methyltransferases of mammals, Hum. Mol. Genet. 9, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  • Brandeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J. R., Razin, A., and Cedar, H. (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse, EMBO J. 12, 3669–3677.

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden, M. and Frommer, M. (1987) CpG islands in vertebrate genomes, J. Mol. Biol. 196, 261–282.

    Article  PubMed  CAS  Google Scholar 

  • Hendrich, B. and Bird, A. (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins, Mol. Cell. Biol. 18, 6538–6547.

    PubMed  CAS  Google Scholar 

  • Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, I., and Wolffe, A. P. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription, Nat. Genet. 19, 187–189.

    Article  PubMed  CAS  Google Scholar 

  • Kafri, T., Ariel, M., Shemer, R., Urven, L., McCarrey, J. R., Cedar, H., and Razin, A. (1992) Dynamics of gene specific DNA methylation in the mouse embryo and germ line, Genes Dev. 6, 705–714.

    Article  PubMed  CAS  Google Scholar 

  • Nan, X., Tate, P., Li, E., and Bird, A. P. (1996) DNA methylation specifies chromosomal localization of MeCP2, Mol. Cell. Biol. 16, 414–421.

    PubMed  CAS  Google Scholar 

  • Ng, and Bird, A. (1999) DNA methylation and chromatin modification, Curr. Op. Genet. Dev. 9, 158–163.

    Article  PubMed  Google Scholar 

  • Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clarck, V., Bird, A. P., and Jaenisch, R. (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a., Proc. Natl. Acad. Sei. USA 97, 5237–5242.

    Article  CAS  Google Scholar 

  • Riggs, A. D. and Porter, T. N. (1996) X-chromosome inactivation and epigenetic mechanisms, in: Epigenetic Mechanisms of Gene Regulation, (Russo, E., Martienssen, R., and Riggs, A.D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 231–248.

    Google Scholar 

  • Shemer, R. and Razin, A. (1996) Establishment of imprinted methylation patterns during development, in: Epigenetic Mechanisms of Gene Regulation, (Russo, E., Martienssen, R., and Riggs, A.D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 215–230.

    Google Scholar 

  • Tilghman, S. M. (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development, Cell 96, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. P., Stroud, J. C., Walter, C. A., Adrian, G. S., and McCarrey, J. R. (1998) A gene-specific promoter in transgenic mice directs testis-specific demethylation prior to transcriptional activation in vivo, Biol. Reprod. 59, 284–292.

    Article  PubMed  CAS  Google Scholar 

Chromatin Structure and Composition

  • Carey, M. and Smale, S. T. (2000) Transcriptional regulation in eukaryotes, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 640

    Google Scholar 

  • Kramer, J. A., McCarey, J. R., Djakiew, D., and Krawetz, S. A. (1998) Differentiation: The selective potentiation of chromatin domains, Development 9, 4749–4755.

    Google Scholar 

  • Urnov, F. D. and Wolffe, A. P. (2001) Chromatin remodeling and transcriptional activation: the cast (in order of appearance), Oncogene 20, 2991–3006.

    Article  PubMed  CAS  Google Scholar 

  • Varga-Weisz, P. D. and Becker, P. B. (1998) Chromatin-remodeling factors: machines that regulate? Cuff. Op. Cell. Biol. 10, 346–353.

    Article  CAS  Google Scholar 

  • Wolffe, A. P. (1992) Chromatin, Academic Press, San Diego, CA, p. 213.

    Google Scholar 

DNA Loop Domains and Association with the Nuclear Matrix

  • Bell, A. C., West, A. G., and Felsenfeld, G. (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome, Science 291, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Klaus, A., McCarrey, J. R., Farkas, A., and Ward, W. S. (2001) Changes in DNA loop domain structure during spermatogenesis and embryogenesis, Biology of Reproduction 64, 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch, J., Mirault, M. E., and Laemmli, U. (1984) Organization of the higherorder chromatin loop: specific DNA attachment sites on nuclear scaffold, Cell 39, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Sotolongo, B. and Ward, W. S. (2000) DNA loop domain organization: the threedimensional genomic code, J. Cell. Biochem. Suppl. 35, 23–26.

    Article  Google Scholar 

  • Stein, G. S. and Berezney, R. (2000) 25 years of contributions to characterizing gene expression and replication within the three-dimensional context of nuclear architecture, Crit. Rev. Eukaryot. Gene. Expr. 10, v—vi.

    Google Scholar 

Replication Timing

  • Goldman, M. A., Holmquist, G. P., Gray, M. C., Caston, L. A., and Nag, A. (1984) Replication timing of genes and middle repetitive sequences, Science 224, 686–692.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, R. S., Canfield, T. K., Lamb, M. M., Gartler, S. M., and Laird, C. D. (1993) Association of fragile X syndrome with delayed replication of the FMR1 gene, Cell 73, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Kitsberg, D., Selig, S., Brandeis, M., Simon, I., Keshet, I., Driscoll, D. J., Nichols, R. D., and Cedar, H. (1993) Allele-specific replication timing of imprinted gene regions, Nature 364, 459–463.

    Article  PubMed  CAS  Google Scholar 

  • Simon, I., Tanzen, T., Rubinoff, B., McCarrey, J., and Cedar, H. (1999) Asynchronous replication of imprinted genes is established in the gametes and maintained during development, Nature 401, 929–932.

    Article  PubMed  CAS  Google Scholar 

Epigenetics and Cloning

  • Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, III W., Yanagimachi, R., and Jaenisch, R. (2000) X-chromosome inactivation in cloned mouse embryos, Science 290, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, 3rd, W. M., Biniszkiewicz, D., et al. (2001) Epigenetic instability in ES cells and cloned mice, Science 293, 95–97.

    Article  PubMed  CAS  Google Scholar 

  • Krawetz, S. A., Kramer, J. A., and McCarrey, J. R. (1999) Reprogramming the male gamete genome: a window to successful gene therapy, Gene 234, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Lanza, R. P., Cibelli, J. B., Blackwell, C., Cristofalo, V. J., Francis, M. K., Baerlocher, G. M., et al. (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science. 28, 665–669.

    Article  Google Scholar 

  • Rideout, III W. M., Eggan, K., and Jaenisch, R. (2001) Nuclear cloning and epigenetic reprogramming of the genome, Science 293, 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  • Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei, Nature 394, 369–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarrey, J.R. (2003). Epigenetic Mechanisms Regulating Gene Expression. In: Krawetz, S.A., Womble, D.D. (eds) Introduction to Bioinformatics. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-335-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-335-4_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-241-4

  • Online ISBN: 978-1-59259-335-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics