Skip to main content

Stem Cells for Spinal Cord Injury

  • Chapter
  • 132 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Spinal cord injury (SCI) frequently results in the devastating loss of such neurological functions as mobility, sensation, and autonomic control below the level of the lesion. A number of regenerative approaches to possibly regain these functions have been examined in SCI models. Recent progress in isolating and culturing multipotent neural stem cells (NSCs) and neural progenitor cells from developing or even adult CNS tissue (1–8) has allowed neural stem cells to emerge as an intriguing and potentially useful means of promoting neural repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snyder, E. Y., Park, K. I., Flax, J. D., Liu, S., Rosario, C. M., Yandava, B. D., et al. (1997) Potential of neural “stem-like” cells for gene therapy and repair of the degenerating central nervous system. Adv. Neurol. 72, 121–132.

    PubMed  CAS  Google Scholar 

  2. Ourednik, V., Ourednik, J., Park, K. I., and Snyder, E. Y. (1999) Neural stem cells—a versatile tool for cell replacement and gene therapy in the central nervous system. Clin. Genet. 56, 267–278.

    Article  PubMed  CAS  Google Scholar 

  3. Ray, J., Palmer, T. D., Shihabuddin, L. S., and Gage, F. H. (1999) The use of neural progenitor cells for therapy in the CNS disorders, in CNS Regeneration: Basic Science and Clinical Advances ( Tuszynski, M. H. and Kordower, J. H., eds.). Academic, San Diego, CA, pp. 183–202.

    Chapter  Google Scholar 

  4. Shihabuddin, L. S., Palmer, T. D., and Gage, F. H. (1999) The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease. Mol. Med. Today 5, 474–480.

    Article  PubMed  CAS  Google Scholar 

  5. Whittemore, S. R. (1999) Neuronal replacement strategies for spinal cord injury. J. Neurotrauma 16, 667–673.

    Article  PubMed  CAS  Google Scholar 

  6. Björklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544.

    Article  PubMed  Google Scholar 

  7. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, J. C., Mayer-Proschel, M., and Rao, M. S. (2000) Gliogenesis in the central nervous system. Glia 30, 105–121.

    Article  PubMed  CAS  Google Scholar 

  9. Schwab, M. E. and Bartholdi, D. (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370.

    PubMed  CAS  Google Scholar 

  10. Giménezy Ribotta, M. and Privat, A. (1998) Biological interventions for spinal cord injury. Curr. Opin. Neurol. 11, 647–654.

    Article  Google Scholar 

  11. Ramony Cajal, S. (1928/1991) Degeneration and Regeneration of the Nerve System. Hafner, New York.

    Google Scholar 

  12. Weidner, N., Ner, A., Salimi, N., and Tuszynski, M. H. (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513–3518.

    Article  PubMed  CAS  Google Scholar 

  13. Nieto-Sampedro, M. (1999) Neurite outgrowth inhibitors in gliotic tissue. Adv. Exp. Med. Biol. 468, 207–224.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, M. S, Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., et al. (2000) NoGo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439.

    Article  PubMed  CAS  Google Scholar 

  15. Grand-Pré, T., Nakamura, F., Vartanian, T., and Strittmatter, S. M. (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444.

    Article  Google Scholar 

  16. Fawcett, J. W. and Asher, R. A. (1999) The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391.

    Article  PubMed  CAS  Google Scholar 

  17. Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E., and Silver, J. (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19, 8182–8198.

    PubMed  CAS  Google Scholar 

  18. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y. A., and Schwab, M. E. (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–173.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, X. M., Guénard, V., Kleitman, N., Aebischer, R, and Bunge, M. B. (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp. Neurol. 134, 261–272.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng, H., Cao, Y., and Olson, L. (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513.

    Article  PubMed  CAS  Google Scholar 

  21. Tuszynski, M. H., Gabriel, K., Gage, F. H., Suhr, S., Meyer, S., and Rosetti, A. (1996) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp. Neurol. 137, 157–173.

    Article  PubMed  CAS  Google Scholar 

  22. Grill, R., Murai, K., Blesch, A., Gage, F. H., and Tuszynski, M. H. (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572.

    PubMed  CAS  Google Scholar 

  23. Li, Y., Field, P. M., and Raisman, G. (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002.

    Article  PubMed  CAS  Google Scholar 

  24. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., et al. (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814–821.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, D. W., McKerracher, L., Braun, P.E., and David, S. (1999) A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, Y., Kim, D., Himes, B. T., Chow, S. Y., Schallert, T., Murray, M., et al. (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. 19, 4370–4387.

    PubMed  CAS  Google Scholar 

  27. McDonald, J. W., Liu, X. Z., Qu, Y., Liu, S., Mickey, S. K., Turetsky, D., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  28. Weidner, N., Blesch, A., Grill, R. J., and Tuszynski, M. H. (1999) Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J. Comp. Neurol. 413, 495–506.

    Article  PubMed  CAS  Google Scholar 

  29. Brösamle, C., Huber, A. B., Fiedler, M., Skerra, A., and Schwab, M. E. (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J. Neurosci. 20, 8061–8068.

    PubMed  Google Scholar 

  30. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P., and Skene, J. H. P. (2001) Spinal axons regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. 4, 38–43.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  32. Kalyani, A., Hobson, K., and Rao, M. S. (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dey. Biol. 186, 202–223.

    Article  CAS  Google Scholar 

  33. Kalyani, A. J., Piper, D., Mujtaba, T., Lucero, M. T., and Rao, M. S. (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868.

    PubMed  CAS  Google Scholar 

  34. Mayer-Proschel, M., Kalyani, A. J., Mujtaba, T., and Rao, M. S. (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785.

    Article  PubMed  CAS  Google Scholar 

  35. Rao, M. S. and Mayer-Proschel, M. (1997) Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dey. Biol. 188, 48–63.

    Article  CAS  Google Scholar 

  36. Rao, M. S., Noble, M., and Mayer-Proschel, M. (1998) A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl. Acad. Sci. USA 95, 3996–4001.

    Article  PubMed  CAS  Google Scholar 

  37. Shihabuddin, L. S., Ray, J., and Gage, F. H. (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148, 577–586.

    Article  PubMed  CAS  Google Scholar 

  38. Quinn, S. M., Walters, W. M., Vescovi, A. L., and Whittemore, S. R. (1999) Lineage restriction of neuroepithelial precursor cells from fetal human spinal cord. J Neurosci. Res. 57, 590–602.

    Article  PubMed  CAS  Google Scholar 

  39. Brüstle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    Article  PubMed  Google Scholar 

  40. Mujtaba, T., Piper, D. R., Kalyani, A., Groves, A. K., Lucero, M. T., and Rao, M. S. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dey. Biol. 214, 113–127.

    Article  CAS  Google Scholar 

  41. Martinez-Serrano, A. and Björklund, A. (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538.

    Article  PubMed  CAS  Google Scholar 

  42. Onifer, S. M., Cannon, A. B., and Whittemore, S. R. (1997) Potential of immortalized neural progenitor cells to replace lost adult central nervous system neurons. Transplant. Proc. 29, 2221–2223.

    Article  PubMed  CAS  Google Scholar 

  43. Martinez-Serrano, A. and Snyder, E. Y. (1999) Neural stem cell lines for CNS repair, in CNS Regeneration: Basic Science and Clinical Advances ( Tuszynski, M. H. and Kordower, J. H., eds.), Academic, San Diego, pp. 203–250.

    Chapter  Google Scholar 

  44. Gray, J. A., Grigoryan, G., Virley, D., Patel, S., Sinden, J. D., and Hodges, H. (2000) Conditionally immortalized, multipotential and multifunctional neural stem cell lines as an approach to clinical transplantation. Cell Transplant. 9, 153–168.

    PubMed  CAS  Google Scholar 

  45. Renfranz, R. J., Cunningham, M. G., and McKay, R. D. (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66, 713–729.

    Article  PubMed  CAS  Google Scholar 

  46. Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., and Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51.

    Article  PubMed  CAS  Google Scholar 

  47. Onifer, S. M., Whittemore, S. R., and Holets, V. R. (1993) Variable morphological differentiation of a raphé-derived neuronal cell line following transplantation into the adult rat CNS. Exp. Neurol. 122, 130–142.

    Article  PubMed  CAS  Google Scholar 

  48. Cattaneo, E., Magrassi, L., Butti, G., Santi, L., Giavazzi, A., and Pezzotta, S. (1994) A short term analysis of the behaviour of conditionally immortalized neuronal progenitors and primary neuroepithelial cells implanted into the fetal rat brain. Brain Res. Dev. Brain Res. 83, 197–208.

    Article  PubMed  CAS  Google Scholar 

  49. Cattaneo, E. and Conti, L. (1998) Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J. Neurosci. Res. 53, 223–234.

    Article  PubMed  CAS  Google Scholar 

  50. Hoshimaru, M., Ray, J., Sah, D. W., and Gage, F. H. (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523.

    Article  PubMed  CAS  Google Scholar 

  51. Rao, M. S. and Anderson, D. J. (1997) Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J. Neurobiol. 32, 722–746.

    Article  PubMed  CAS  Google Scholar 

  52. Laywell, E. D., Kukekov, V. G., and Steindler, D. A. (1999) Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp. Neurol. 156, 430–433.

    Article  PubMed  CAS  Google Scholar 

  53. Liu, S., Qu, Y., Stewart, T. J., Howard, M. J., Chakrabortty, S., Holekamp, T. F., et al. (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131.

    Article  PubMed  CAS  Google Scholar 

  54. Franklin, R. J. and Blakemore, W. F. (1997) Transplanting oligodendrocyte progenitors into the adult CNS. J. Anat. 190, 23–33.

    Article  PubMed  Google Scholar 

  55. Blakemore, W. F. and Franklin, R. J. (2000) Transplantation options for therapeutic central nervous system remyelination. Cell Transplant. 9, 289–294.

    PubMed  CAS  Google Scholar 

  56. Hammang, J. P., Archer, D. R., and Duncan, I. D. (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang, S., Lundberg, C., Lipsitz, D., O’Connor, L. T., and Duncan, I. D. (1998) Generation of oligodendroglial progenitors from neural stem cells. J. Neurocytol. 27, 475–489.

    Article  PubMed  CAS  Google Scholar 

  58. Franklin, R. J., Bayley, S. A., Milner, R., Ffrench-Constant, C., and Blakemore, W. F. (1995) Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter. Glia 13, 39–44.

    Article  PubMed  CAS  Google Scholar 

  59. Franklin, R. J., Bayley, S. A., and Blakemore, W. F. (1996) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp. Neurol. 137, 263–276.

    Article  PubMed  CAS  Google Scholar 

  60. Keirstead, H. S., Ben-Hur, T., Rogister, B., O’Leary, M. T., Dubois-Dalcq, M., and Blakemore, W. F. (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J. Neurosci. 19, 7529–7536.

    PubMed  CAS  Google Scholar 

  61. Luskin, M. B., Zigova, T., Soteres, B. J., and Stewart, R. R. (1997) Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol. Cell. Neurosci. 8, 351–366.

    Article  PubMed  CAS  Google Scholar 

  62. Morshead, C. M., Craig, C. G., and van der Kooy, D. (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261.

    PubMed  CAS  Google Scholar 

  63. Chiasson, B. J., Tropepe, V., Morshead, C. M., and van der Kooy, D. (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471.

    PubMed  CAS  Google Scholar 

  64. Smith, P. M. and Blakemore, W. F. (2000) Porcine neural progenitors require commitment to the oligodendrocyte lineage prior to transplantation in order to achieve significant remyelination of demyelinated lesions in the adult CNS. Eur. J. Neurosci. 12, 2414–2424.

    Article  PubMed  CAS  Google Scholar 

  65. White, L. A. and Whittemore, S. R. (1992) Immortalization of raphe neurons: an approach to neuronal function in vitro and in vivo. J. Chem. Neuroanat. 5, 327–330.

    Article  PubMed  CAS  Google Scholar 

  66. Shihabuddin, L. S., Hertz, J. A., Holets, V. R., and Whittemore, S. R. (1995) The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line. J. Neurosci. 15, 6666–6678.

    PubMed  CAS  Google Scholar 

  67. Shihabuddin, L. S., Brunschwig, J. P., Holets, V. R., Bunge, M. B., and Whittemore, S. R. (1996) Induction of mature neuronal properties in immortalized neuronal precursor cells following grafting into the neonatal CNS. J. Neurocytol. 25, 101–111.

    Article  PubMed  CAS  Google Scholar 

  68. Onifer, S. M., Cannon, A. B., and Whittemore, S. R. (1997) Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord. Cell Transplant. 6, 327–338.

    Article  PubMed  CAS  Google Scholar 

  69. Ryder, E. F., Snyder, E. Y., and Cepko, C. L. (1990) Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 21, 356–375.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor, R. M. and Snyder, E. Y. (1997) Widespread engraftment of neural progenitor and stem-like cells throughout the mouse brain. Transplant. Proc. 29, 845–847.

    Article  PubMed  CAS  Google Scholar 

  71. Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Article  PubMed  CAS  Google Scholar 

  72. Park, K. I., Liu, S., Flax, J. D., Nissim, S., Stieg, P. E., and Snyder, E. Y. (1999) Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J. Neurotrauma 16, 675–687.

    Article  PubMed  CAS  Google Scholar 

  73. Snyder, E. Y., Taylor, R. M., and Wolfe, J. H. (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370.

    Article  PubMed  CAS  Google Scholar 

  74. Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11,663–11, 668.

    Article  PubMed  CAS  Google Scholar 

  75. Rosario, C. M., Yandava, B. D., Kosaras, B., Zurakowski, D., Sidman, R. L., and Snyder, E. Y. (1997) Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development 124, 4213–4224.

    PubMed  CAS  Google Scholar 

  76. Weidner, N., Grill, R. J., and Tuszynski, M. H. (1999) Elimination of basal lamina and the collagen “scar” after spinal cord injury fails to augment corticospinal tract regeneration. Exp. Neurol. 160, 40–50.

    Article  PubMed  CAS  Google Scholar 

  77. Conner, J. M. and Varon, S. (1996) Characterization of antibodies to nerve growth factor: assay-dependent variability in the cross-reactivity with other neurotrophins. J. Neurosci. Methods 65, 93–99.

    Article  PubMed  CAS  Google Scholar 

  78. Blesch, A., Uy, H. S., Grill, R. J., Cheng, J. G., Patterson, P. H., and Tuszynski, M. H. (1999) Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J. Neurosci. 19, 3556–3566.

    PubMed  CAS  Google Scholar 

  79. Farinas, I., Yoshida, C. K., Backus, C., and Reichardt, L. F. (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078.

    Article  PubMed  CAS  Google Scholar 

  80. Bradbury, E. J., Khemani, S., Von, R., et al. (1999) NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci. 11, 3873–3883.

    Article  PubMed  CAS  Google Scholar 

  81. Liu, Y., Himes, B. T., Solowska, J., Moul, J., Chow, S. Y., Park, K. I., et al. (1999) Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp. Neurol. 158, 9–26.

    Article  PubMed  CAS  Google Scholar 

  82. McTigue, D. M., Horner, P. J., Stokes, B. T., and Gage, F. H. (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J. Neurosci. 18, 5354–5365.

    PubMed  CAS  Google Scholar 

  83. Bregman, B. S., Kunkel-Bagden, E., Schnell, L., Dai, H. N., Gao, D., and Schwab, M. E. (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501.

    Article  PubMed  CAS  Google Scholar 

  84. Filbin, M. T. (2000) Axon regeneration: vaccinating against spinal cord injury. Curr. Biol. 10, R100 - R1033.

    Article  PubMed  CAS  Google Scholar 

  85. Moon, L. D., Brecknell, J. E., Franklin, R. J., Dunnett, S. B., and Fawcett, J. W. (2000) Robust regeneration of CNS axons through a track depleted of CNS glia. Exp. Neurol. 161, 49–66.

    Article  PubMed  CAS  Google Scholar 

  86. Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., and Frisén, J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    Article  PubMed  CAS  Google Scholar 

  87. Liu, R. H., Morassutti, D. J., Whittemore, S. R., Sosnowski, J.S., and Magnuson, D. S. (1999) Electrophysiological properties of mitogen-expanded adult rat spinal cord and subventricular zone neural precursor cells. Exp. Neurol. 158, 143–154.

    Article  PubMed  CAS  Google Scholar 

  88. Brazelton, T. R., Rossi, F. M. V., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  89. Homer, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., et al. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228.

    Google Scholar 

  90. Mezey, E., Chandross, K. J., Harta, G., Maki, R.A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  91. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

  92. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  93. Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J. (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282, 148–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, P., Snyder, E.Y., Tuszynski, M.H. (2003). Stem Cells for Spinal Cord Injury. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics